bedio commited on
Commit
d25547c
1 Parent(s): e59ac2d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -86
README.md CHANGED
@@ -16,7 +16,8 @@ model-index:
16
  value: 48.13
17
  name: strict accuracy
18
  source:
19
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
 
20
  name: Open LLM Leaderboard
21
  - task:
22
  type: text-generation
@@ -31,7 +32,8 @@ model-index:
31
  value: 5.19
32
  name: normalized accuracy
33
  source:
34
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
 
35
  name: Open LLM Leaderboard
36
  - task:
37
  type: text-generation
@@ -46,7 +48,8 @@ model-index:
46
  value: 1.36
47
  name: exact match
48
  source:
49
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
 
50
  name: Open LLM Leaderboard
51
  - task:
52
  type: text-generation
@@ -61,7 +64,8 @@ model-index:
61
  value: 2.35
62
  name: acc_norm
63
  source:
64
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
 
65
  name: Open LLM Leaderboard
66
  - task:
67
  type: text-generation
@@ -76,7 +80,8 @@ model-index:
76
  value: 4.05
77
  name: acc_norm
78
  source:
79
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
 
80
  name: Open LLM Leaderboard
81
  - task:
82
  type: text-generation
@@ -93,8 +98,14 @@ model-index:
93
  value: 3.05
94
  name: accuracy
95
  source:
96
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
 
97
  name: Open LLM Leaderboard
 
 
 
 
 
98
  ---
99
 
100
  # Model Card for Model ID
@@ -103,96 +114,101 @@ model-index:
103
 
104
 
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  ## Model Details
107
 
108
- ### Model Description
109
 
110
  <!-- Provide a longer summary of what this model is. -->
111
 
112
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
113
 
114
- - **Developed by:** [More Information Needed]
115
- - **Funded by [optional]:** [More Information Needed]
116
- - **Shared by [optional]:** [More Information Needed]
117
- - **Model type:** [More Information Needed]
118
- - **Language(s) (NLP):** [More Information Needed]
119
- - **License:** [More Information Needed]
120
- - **Finetuned from model [optional]:** [More Information Needed]
 
121
 
122
  ### Model Sources [optional]
123
 
124
  <!-- Provide the basic links for the model. -->
125
 
126
- - **Repository:** [More Information Needed]
127
- - **Paper [optional]:** [More Information Needed]
128
- - **Demo [optional]:** [More Information Needed]
129
 
130
  ## Uses
131
 
132
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
133
 
134
- ### Direct Use
135
 
136
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
137
 
138
- [More Information Needed]
139
 
140
- ### Downstream Use [optional]
141
 
142
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
143
-
144
- [More Information Needed]
145
 
146
  ### Out-of-Scope Use
147
 
148
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
149
 
150
- [More Information Needed]
151
 
152
  ## Bias, Risks, and Limitations
153
 
154
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
155
 
156
- [More Information Needed]
157
-
158
- ### Recommendations
159
-
160
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
161
-
162
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
163
 
164
  ## How to Get Started with the Model
165
-
166
- Use the code below to get started with the model.
167
-
168
- [More Information Needed]
169
 
170
  ## Training Details
 
 
 
 
 
171
 
172
  ### Training Data
 
173
 
174
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
175
 
176
- [More Information Needed]
177
 
178
  ### Training Procedure
179
 
180
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
181
 
182
- #### Preprocessing [optional]
 
 
183
 
184
- [More Information Needed]
185
-
186
-
187
- #### Training Hyperparameters
188
-
189
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
190
-
191
- #### Speeds, Sizes, Times [optional]
192
 
193
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
194
 
195
- [More Information Needed]
196
 
197
  ## Evaluation
198
 
@@ -200,11 +216,10 @@ Use the code below to get started with the model.
200
 
201
  ### Testing Data, Factors & Metrics
202
 
203
- #### Testing Data
204
 
205
  <!-- This should link to a Dataset Card if possible. -->
206
 
207
- [More Information Needed]
208
 
209
  #### Factors
210
 
@@ -236,58 +251,37 @@ Use the code below to get started with the model.
236
 
237
  <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
238
 
 
 
239
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
240
 
241
- - **Hardware Type:** [More Information Needed]
242
- - **Hours used:** [More Information Needed]
243
- - **Cloud Provider:** [More Information Needed]
244
- - **Compute Region:** [More Information Needed]
245
- - **Carbon Emitted:** [More Information Needed]
246
 
247
  ## Technical Specifications [optional]
248
 
249
  ### Model Architecture and Objective
250
 
251
- [More Information Needed]
 
 
 
 
 
252
 
253
  ### Compute Infrastructure
254
 
255
- [More Information Needed]
256
 
257
  #### Hardware
258
 
259
- [More Information Needed]
260
 
261
  #### Software
262
 
263
- [More Information Needed]
264
-
265
- ## Citation [optional]
266
-
267
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
268
-
269
- **BibTeX:**
270
-
271
- [More Information Needed]
272
-
273
- **APA:**
274
-
275
- [More Information Needed]
276
-
277
- ## Glossary [optional]
278
-
279
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
280
-
281
- [More Information Needed]
282
-
283
- ## More Information [optional]
284
-
285
- [More Information Needed]
286
-
287
- ## Model Card Authors [optional]
288
-
289
- [More Information Needed]
290
-
291
  ## Model Card Contact
292
293
 
@@ -303,5 +297,4 @@ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-le
303
  |MATH Lvl 5 (4-Shot)| 6.04|
304
  |GPQA (0-shot) | 1.68|
305
  |MuSR (0-shot) | 0.66|
306
- |MMLU-PRO (5-shot) | 9.09|
307
-
 
16
  value: 48.13
17
  name: strict accuracy
18
  source:
19
+ url: >-
20
+ https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
21
  name: Open LLM Leaderboard
22
  - task:
23
  type: text-generation
 
32
  value: 5.19
33
  name: normalized accuracy
34
  source:
35
+ url: >-
36
+ https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
37
  name: Open LLM Leaderboard
38
  - task:
39
  type: text-generation
 
48
  value: 1.36
49
  name: exact match
50
  source:
51
+ url: >-
52
+ https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
53
  name: Open LLM Leaderboard
54
  - task:
55
  type: text-generation
 
64
  value: 2.35
65
  name: acc_norm
66
  source:
67
+ url: >-
68
+ https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
69
  name: Open LLM Leaderboard
70
  - task:
71
  type: text-generation
 
80
  value: 4.05
81
  name: acc_norm
82
  source:
83
+ url: >-
84
+ https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
85
  name: Open LLM Leaderboard
86
  - task:
87
  type: text-generation
 
98
  value: 3.05
99
  name: accuracy
100
  source:
101
+ url: >-
102
+ https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepAutoAI/Explore_Llama-3.2-1B-Inst_v1.1
103
  name: Open LLM Leaderboard
104
+ license: apache-2.0
105
+ language:
106
+ - en
107
+ base_model:
108
+ - meta-llama/Llama-3.2-1B-Instruct
109
  ---
110
 
111
  # Model Card for Model ID
 
114
 
115
 
116
 
117
+
118
+ ## Overview
119
+
120
+
121
+ **DeepAutoAI/Explore_Llama-3.2-1B-Inst** is developed by **deepAuto.ai** by learning the distribution of llama-3.2-1B-instruct.
122
+ Our approach leverages the base model’s pretrained weights and optimizes them for the **Winogrande** and **ARC-Challenge** datasets by
123
+ training a latent diffusion model on the pretrained weights. specifically , this model is based on learning the distrinution of transformer layers from 16 to 31.
124
+
125
+ Through this process, we learn the distribution of the base model's weight space, enabling us to explore optimal configurations.
126
+ We then sample multiple sets of weights, using the **model-soup averaging technique** to identify the best-performing weights for both datasets.
127
+ These weights are merged using linear interpolation to create the final model weights for **DeepAutoAI/Explore_Llama-3.1-1B-Inst**.
128
+
129
+ This approach has led to improved performance on previously unseen leaderboard tasks, all without any additional task-specific training.
130
+
131
+ The work is currently in progress
132
+
133
+
134
  ## Model Details
135
 
 
136
 
137
  <!-- Provide a longer summary of what this model is. -->
138
 
139
+ We trained a diffusion model to learn the distribution of subset of llama to enable generation weights that improve the performance.
140
+ We generate task specific weights on winogrande and arc_challenge then transfer the best model for leaderboard benchmarking.
141
 
142
+ - **Developed by:** DeepAuto.ai
143
+ - **Funded by [optional]:** DeepAuto.ai
144
+ - **Shared by [optional]:** DeepAuto.ai
145
+ - **Model type:** llama-3.2-1B
146
+ - **Language(s) (NLP):** English
147
+ - **License:** Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
148
+ - compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
149
+ - **Finetuned from model [optional]:** No fine-tuning
150
 
151
  ### Model Sources [optional]
152
 
153
  <!-- Provide the basic links for the model. -->
154
 
155
+ - **Repository:** Under construction
156
+ - **Paper [optional]:** To be announce
157
+
158
 
159
  ## Uses
160
 
161
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
162
 
 
163
 
164
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
165
 
166
+ The direct use case of our work is o improve existing model performance as well as generating task specific weights with no training.
167
 
 
168
 
169
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
170
+ Performance improvement of existing large models with limited compute
 
171
 
172
  ### Out-of-Scope Use
173
 
174
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
175
 
176
+ No fine-tuning or architecture generalization
177
 
178
  ## Bias, Risks, and Limitations
179
 
180
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
181
 
182
+ Using a generative model to produce weights can potentially lead to unintended or undesirable outputs. However, the generated content
183
+ will still fall within the range of what the base model is inherently capable of producing.
 
 
 
 
 
184
 
185
  ## How to Get Started with the Model
186
+ The work is under progress
 
 
 
187
 
188
  ## Training Details
189
+ We employed a latent diffusion process on pretrained model weights, unlocking the ability to generate diverse, previously unseen neural networks.
190
+ Remarkably, even within the constraints of one-shot learning, our approach consistently produces a wide range of weight variations, each offering
191
+ distinct performance characteristics. These generated weights not only open opportunities for weight averaging and model merging but also have the
192
+ potential to significantly enhance model performance. Moreover, they enable the creation of task-specific weights, tailored to optimize performance
193
+ for specialized applications
194
 
195
  ### Training Data
196
+ The training data used to produced the current model is the base pretrained weights
197
 
198
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
199
 
 
200
 
201
  ### Training Procedure
202
 
203
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
204
 
205
+ - We selected a set of layers and combined their pretrained weights, then trained a Variational Autoencoder (VAE) to encode these weights into the layer dimension.
206
+ - We conditionally trained a diffusion model on this set of weights, allowing individual sampling of layer-specific weights.
207
+ - All selected layers were encoded into a 1024-dimensional space. This model exclusively contained the sampled weights for layer normalization."
208
 
 
 
 
 
 
 
 
 
209
 
210
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
211
 
 
212
 
213
  ## Evaluation
214
 
 
216
 
217
  ### Testing Data, Factors & Metrics
218
 
 
219
 
220
  <!-- This should link to a Dataset Card if possible. -->
221
 
222
+ We test our method on Winogrande and arc_challenge, and hellaswag
223
 
224
  #### Factors
225
 
 
251
 
252
  <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
253
 
254
+
255
+
256
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
257
 
258
+ - **Hardware Type:** Nvidia-A100-40Gb
259
+ - **Hours used:** VAE is trained for 4 hour and diffusion process 4 hours
260
+ - **Compute Region:** South Korea
261
+ - **Carbon Emitted:** 0.96kg
 
262
 
263
  ## Technical Specifications [optional]
264
 
265
  ### Model Architecture and Objective
266
 
267
+ We used Latent diffusion for weights generation, and llama3-2-1B as target architectures.
268
+
269
+ The primary objective of this weight generation process was to demonstrate that by learning only the distribution
270
+ of few layers weights (normlaization layers in this case) in an 1-billion-parameter model, it is possible to significantly enhance the
271
+ model's capabilities. Notably, this is achieved using a fraction of the computational resources and without the
272
+ need for fine-tuning, showcasing the efficiency and potential of this approach.
273
 
274
  ### Compute Infrastructure
275
 
276
+ Nvidia-A100 cluster
277
 
278
  #### Hardware
279
 
280
+ A single Nvidia-A100
281
 
282
  #### Software
283
 
284
+ Model is tested using lm-harness tool version 0.4.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
  ## Model Card Contact
286
287
 
 
297
  |MATH Lvl 5 (4-Shot)| 6.04|
298
  |GPQA (0-shot) | 1.68|
299
  |MuSR (0-shot) | 0.66|
300
+ |MMLU-PRO (5-shot) | 9.09|