Edit model card

binary_classification2

This model is a fine-tuned version of cardiffnlp/twitter-xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7178
  • F1: 0.7750

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1
0.4132 0.2625 100 0.4500 0.7621
0.6075 0.5249 200 0.4293 0.7781
0.3672 0.7874 300 0.3937 0.7964
0.3682 1.0499 400 0.4572 0.7864
0.3747 1.3123 500 0.4268 0.7946
0.339 1.5748 600 0.4087 0.7853
0.4468 1.8373 700 0.4649 0.7972
0.2621 2.0997 800 0.4521 0.7889
0.2443 2.3622 900 0.5213 0.7927
0.289 2.6247 1000 0.5290 0.7749
0.3365 2.8871 1100 0.4803 0.7835
0.3744 3.1496 1200 0.6371 0.7861
0.2841 3.4121 1300 0.6773 0.7881
0.2847 3.6745 1400 0.6217 0.7826
0.1881 3.9370 1500 0.6898 0.7807
0.0901 4.1995 1600 0.7506 0.7726
0.1814 4.4619 1700 0.7278 0.7760
0.3393 4.7244 1800 0.7157 0.7729
0.2436 4.9869 1900 0.7178 0.7750

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
2
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DeGrimer/disaster_tweet_classification

Finetuned
(5)
this model