afro-xlmr-large-75L
AfroXLMR-large was created by MLM adaptation of XLM-R-large model on 75 languages widely spoken in Africa including 4 high-resource languages.
Pre-training corpus
A mix of mC4, Wikipedia and OPUS data
Languages
There are 75 languages available :
- English (eng)
- Amharic (amh)
- Arabic (ara)
- Somali (som)
- Kiswahili (swa)
- Portuguese (por)
- Afrikaans (afr)
- French (fra)
- isiZulu (zul)
- Malagasy (mlg)
- Hausa (hau)
- chiShona (sna)
- Egyptian Arabic (arz)
- Chichewa (nya)
- Igbo (ibo)
- isiXhosa (xho)
- Yorùbá (yor)
- Sesotho (sot)
- Kinyarwanda (kin)
- Tigrinya (tir)
- Tsonga (tso)
- Oromo (orm)
- Rundi (run)
- Northern Sotho (nso)
- Ewe (ewe)
- Lingala (lin)
- Twi (twi)
- Nigerian Pidgin (pcm)
- Ga (gaa)
- Lozi (loz)
- Luganda (lug)
- Gun (guw)
- Bemba (bem)
- Efik (efi)
- Luvale (lue)
- Luba-Lulua (lua)
- Tonga (toi)
- Tshivenḓa (ven)
- Tumbuka (tum)
- Tetela (tll)
- Isoko (iso)
- Kaonde (kqn)
- Zande (zne)
- Umbundu (umb)
- Mossi (mos)
- Tiv (tiv)
- Luba-Katanga (lub)
- Fula (fuv)
- San Salvador Kongo (kwy)
- Baoulé (bci)
- Ruund (rnd)
- Luo (luo)
- Wolaitta (wal)
- Swazi (ssw)
- Lunda (lun)
- Wolof (wol)
- Nyaneka (nyk)
- Kwanyama (kua)
- Kikuyu (kik)
- Fon (fon)
- Bambara (bam)
- Chokwe (cjk)
- Dinka (dik)
- Dyula (dyu)
- Kabyle (kab)
- Kamba (kam)
- Kabiyè (kbp)
- Kanuri (knc)
- Kimbundu (kmb)
- Kikongo (kon)
- Nuer (nus)
- Sango (sag)
- Tamasheq (taq)
- Tamazight (tzm)
Acknowledgment
Model trained by @Jesujoba
BibTeX entry and citation info.
@misc{adelani2023sib200,
title={SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects},
author={David Ifeoluwa Adelani and Hannah Liu and Xiaoyu Shen and Nikita Vassilyev and Jesujoba O. Alabi and Yanke Mao and Haonan Gao and Annie En-Shiun Lee},
year={2023},
eprint={2309.07445},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.