Model Card for Model ID

This PEFT weight is for predicting BTC price.

Disclaimer: This model is for a time series problem on LLM performance, and it's not for investment advice; any prediction results are not a basis for investment reference.

Model Details

Training data source: BTC/USD provided by Binance.

Model Description

This repo contains QLoRA format model files for Meta's Llama 2 7B-chat.

Uses

import torch
from peft import LoraConfig, PeftModel

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    TextStreamer,
    pipeline,
    logging,
)

device_map = {"": 0}
use_4bit = True
bnb_4bit_compute_dtype = "float16"
bnb_4bit_quant_type = "nf4"
use_nested_quant = False
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=use_4bit,
    bnb_4bit_quant_type=bnb_4bit_quant_type,
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=use_nested_quant,
)

based_model_path = "DavidLanz/Llama2-tw-7B-v2.0.1-chat"
adapter_path = "DavidLanz/llama2_7b_taiwan_btc_qlora"

base_model = AutoModelForCausalLM.from_pretrained(
    based_model_path,
    low_cpu_mem_usage=True,
    # load_in_4bit=True,
    return_dict=True,
    quantization_config=bnb_config,
    torch_dtype=torch.float16,
    device_map=device_map,
)
model = PeftModel.from_pretrained(base_model, adapter_path)

tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"

from transformers import pipeline

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto")
messages = [
    {
        "role": "system",
        "content": "你是一位專業的BTC虛擬貨幣分析預測BTC的收盤價格。",
    },
    {"role": "user", "content": "昨日開盤價為64437.18,最高價為64960.37,最低價為62953.90,收盤價為64808.35,交易量為808273.27。請預測今日BTC的收盤價?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Framework versions

  • PEFT 0.10.0
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model authors have turned it off explicitly.

Model tree for DavidLanz/llama2_7b_taiwan_btc_qlora

Adapter
(15)
this model