Chadgpt Llama2 70b conversation
A minimum of 36 GB VRAM is required.
Colab Example
https://colab.research.google.com/drive/10ZBNDK3lRn_IdPgSFQIO2f2UphP1MiVi?usp=sharing
Install Prerequisite
!pip install peft
!pip install transformers
!pip install bitsandbytes
!pip install accelerate
Login Using Huggingface Token
# You need a huggingface token that can access llama2
from huggingface_hub import notebook_login
notebook_login()
Download Model
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
device = "cuda" if torch.cuda.is_available() else "cpu"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
peft_model_id = "danjie/Chadgpt-Llama2-70b-conversation"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map='cuda', quantization_config=bnb_config)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
Inference
# Run this cell to start a new conversation
conversation_history = []
def format_conversation(conversation: list[str]) -> str:
formatted_conversation = ""
# Check if the conversation has more than two turns
if len(conversation) > 2:
# Process all but the last two turns
for i in range(len(conversation) - 2):
if i % 2 == 0:
formatted_conversation += "<Past User>" + conversation[i] + "\n"
else:
formatted_conversation += "<Past Assistant>" + conversation[i] + "\n"
# Process the last two turns
if len(conversation) >= 2:
formatted_conversation += "<User>" + conversation[-2] + "\n"
formatted_conversation += "<Assistant>" + conversation[-1]
return formatted_conversation
def talk_with_llm(chat: str) -> str:
# Encode and move tensor into cuda if applicable.
conversation_history.append(chat)
conversation_history.append("")
conversation = format_conversation(conversation_history)
encoded_input = tokenizer(conversation, return_tensors='pt')
encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
output = model.generate(**encoded_input, max_new_tokens=256)
response = tokenizer.decode(output[0], skip_special_tokens=True)
response = response[len(conversation):]
conversation_history.pop()
conversation_history.append(response)
return response
- Downloads last month
- 2
Model tree for Danjie/Chadgpt-Llama2-70b-conversation
Base model
meta-llama/Llama-2-70b-chat-hf