mmlu_small_noaugse1_llama_lora

This model is a fine-tuned version of Daewon0808/prm800k_llama_fulltune on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3012
  • Prm accuracy: 0.8730
  • Prm precision: 0.8824
  • Prm recall: 0.9813
  • Prm specificty: 0.2632
  • Prm npv: 0.7143
  • Prm f1: 0.9292
  • Prm f1 neg: 0.3846
  • Prm f1 auc: 0.6222
  • Prm f1 auc (fixed): 0.8866

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 908932403
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Prm accuracy Prm precision Prm recall Prm specificty Prm npv Prm f1 Prm f1 neg Prm f1 auc Prm f1 auc (fixed)
No log 0 0 0.3535 0.8333 0.8772 0.9346 0.2632 0.4167 0.9050 0.3226 0.5989 0.8195
0.3732 0.0229 5 0.3504 0.8333 0.8707 0.9439 0.2105 0.4 0.9058 0.2759 0.5772 0.8212
0.3481 0.0459 10 0.4012 0.8571 0.856 1.0 0.0526 1.0 0.9224 0.1 0.5263 0.8384
0.271 0.0688 15 0.3846 0.8571 0.856 1.0 0.0526 1.0 0.9224 0.1 0.5263 0.8596
0.2408 0.0917 20 0.3040 0.8492 0.8729 0.9626 0.2105 0.5 0.9156 0.2963 0.5866 0.8610
0.2908 0.1147 25 0.3220 0.8571 0.8678 0.9813 0.1579 0.6 0.9211 0.25 0.5696 0.8714
0.2546 0.1376 30 0.2797 0.8651 0.8814 0.9720 0.2632 0.625 0.9244 0.3704 0.6176 0.8778
0.1904 0.1606 35 0.3013 0.8571 0.8618 0.9907 0.1053 0.6667 0.9217 0.1818 0.5480 0.8792
0.3147 0.1835 40 0.2761 0.8651 0.8814 0.9720 0.2632 0.625 0.9244 0.3704 0.6176 0.8832
0.225 0.2064 45 0.2742 0.8651 0.8947 0.9533 0.3684 0.5833 0.9231 0.4516 0.6608 0.8775
0.2551 0.2294 50 0.3032 0.8413 0.8595 0.9720 0.1053 0.4 0.9123 0.1667 0.5386 0.8778
0.1994 0.2523 55 0.2781 0.8730 0.8957 0.9626 0.3684 0.6364 0.9279 0.4667 0.6655 0.8770
0.2473 0.2752 60 0.3117 0.8571 0.8739 0.9720 0.2105 0.5714 0.9204 0.3077 0.5912 0.8812
0.1736 0.2982 65 0.3300 0.8651 0.8689 0.9907 0.1579 0.75 0.9258 0.2609 0.5743 0.8815
0.1567 0.3211 70 0.2807 0.8571 0.8739 0.9720 0.2105 0.5714 0.9204 0.3077 0.5912 0.8763
0.1793 0.3440 75 0.3020 0.8571 0.8739 0.9720 0.2105 0.5714 0.9204 0.3077 0.5912 0.8768
0.1223 0.3670 80 0.3180 0.8571 0.8739 0.9720 0.2105 0.5714 0.9204 0.3077 0.5912 0.8790
0.1849 0.3899 85 0.3032 0.8492 0.8729 0.9626 0.2105 0.5 0.9156 0.2963 0.5866 0.8834
0.2052 0.4128 90 0.2892 0.8651 0.8879 0.9626 0.3158 0.6 0.9238 0.4138 0.6392 0.8856
0.2269 0.4358 95 0.2980 0.8492 0.8729 0.9626 0.2105 0.5 0.9156 0.2963 0.5866 0.8861
0.169 0.4587 100 0.2658 0.8651 0.8879 0.9626 0.3158 0.6 0.9238 0.4138 0.6392 0.8893
0.1243 0.4817 105 0.2611 0.8571 0.8803 0.9626 0.2632 0.5556 0.9196 0.3571 0.6129 0.8866
0.2538 0.5046 110 0.2870 0.8730 0.8760 0.9907 0.2105 0.8 0.9298 0.3333 0.6006 0.8837
0.1748 0.5275 115 0.2800 0.8651 0.875 0.9813 0.2105 0.6667 0.9251 0.32 0.5959 0.8805
0.1598 0.5505 120 0.2816 0.8571 0.8803 0.9626 0.2632 0.5556 0.9196 0.3571 0.6129 0.8780
0.2259 0.5734 125 0.2972 0.8571 0.8678 0.9813 0.1579 0.6 0.9211 0.25 0.5696 0.8778
0.1927 0.5963 130 0.2995 0.8571 0.8678 0.9813 0.1579 0.6 0.9211 0.25 0.5696 0.8815
0.1276 0.6193 135 0.2827 0.8571 0.8739 0.9720 0.2105 0.5714 0.9204 0.3077 0.5912 0.8802
0.1068 0.6422 140 0.2854 0.8651 0.8814 0.9720 0.2632 0.625 0.9244 0.3704 0.6176 0.8834
0.1804 0.6651 145 0.2889 0.8651 0.8814 0.9720 0.2632 0.625 0.9244 0.3704 0.6176 0.8851
0.1829 0.6881 150 0.2849 0.8730 0.8957 0.9626 0.3684 0.6364 0.9279 0.4667 0.6655 0.8834
0.1611 0.7110 155 0.2924 0.8651 0.8879 0.9626 0.3158 0.6 0.9238 0.4138 0.6392 0.8834
0.1683 0.7339 160 0.3141 0.8730 0.8824 0.9813 0.2632 0.7143 0.9292 0.3846 0.6222 0.8842
0.1726 0.7569 165 0.3316 0.8571 0.8678 0.9813 0.1579 0.6 0.9211 0.25 0.5696 0.8832
0.1065 0.7798 170 0.3277 0.8571 0.8678 0.9813 0.1579 0.6 0.9211 0.25 0.5696 0.8832
0.2203 0.8028 175 0.3200 0.8651 0.875 0.9813 0.2105 0.6667 0.9251 0.32 0.5959 0.8844
0.0881 0.8257 180 0.3158 0.8651 0.875 0.9813 0.2105 0.6667 0.9251 0.32 0.5959 0.8859
0.2375 0.8486 185 0.3077 0.8651 0.875 0.9813 0.2105 0.6667 0.9251 0.32 0.5959 0.8856
0.1716 0.8716 190 0.3030 0.8810 0.8898 0.9813 0.3158 0.75 0.9333 0.4444 0.6485 0.8856
0.0486 0.8945 195 0.3034 0.8730 0.8824 0.9813 0.2632 0.7143 0.9292 0.3846 0.6222 0.8856
0.1419 0.9174 200 0.3024 0.8810 0.8898 0.9813 0.3158 0.75 0.9333 0.4444 0.6485 0.8837
0.116 0.9404 205 0.3042 0.8730 0.8824 0.9813 0.2632 0.7143 0.9292 0.3846 0.6222 0.8871
0.1263 0.9633 210 0.3024 0.8810 0.8898 0.9813 0.3158 0.75 0.9333 0.4444 0.6485 0.8842
0.1648 0.9862 215 0.3012 0.8730 0.8824 0.9813 0.2632 0.7143 0.9292 0.3846 0.6222 0.8866

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.0
  • Pytorch 2.4.0+cu118
  • Datasets 3.0.0
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Daewon0808/mmlu_small_noaugse1_llama_lora