metadata
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- semantic-search
- chinese
DMetaSoul/sbert-chinese-qmc-finance-v1
此模型基于 bert-base-chinese 版本 BERT 模型,在大规模银行问题匹配数据集(BQCorpus)上进行训练调优,适用于金融领域的问题匹配场景,比如:
- 8千日利息400元? VS 10000元日利息多少钱
- 提前还款是按全额计息 VS 还款扣款不成功怎么还款?
- 为什么我借钱交易失败 VS 刚申请的借款为什么会失败
注:此模型的轻量化版本,也已经开源啦!
Usage
1. Sentence-Transformers
通过 sentence-transformers 框架来使用该模型,首先进行安装:
pip install -U sentence-transformers
然后使用下面的代码来载入该模型并进行文本表征向量的提取:
from sentence_transformers import SentenceTransformer
sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]
model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-finance-v1')
embeddings = model.encode(sentences)
print(embeddings)
2. HuggingFace Transformers
如果不想使用 sentence-transformers 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取:
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation
该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数:
csts_dev | csts_test | afqmc | lcqmc | bqcorpus | pawsx | xiaobu | |
---|---|---|---|---|---|---|---|
sbert-chinese-qmc-finance-v1 | 77.40% | 74.55% | 36.01% | 75.75% | 73.25% | 11.58% | 54.76% |
Citing & Authors
E-mail: [email protected]