|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- semantic-search |
|
- chinese |
|
--- |
|
|
|
# DMetaSoul/sbert-chinese-general-v2 |
|
|
|
此模型基于 [bert-base-chinese](https://huggingface.co./bert-base-chinese) 版本 BERT 模型,在百万级语义相似数据集 [SimCLUE](https://github.com/CLUEbenchmark/SimCLUE) 上进行训练,适用于**通用语义匹配**场景,从效果来看该模型在各种任务上**泛化能力更好**。 |
|
|
|
注:此模型的[轻量化版本](https://huggingface.co./DMetaSoul/sbert-chinese-general-v2-distill),也已经开源啦! |
|
|
|
# Usage |
|
|
|
## 1. Sentence-Transformers |
|
|
|
通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
然后使用下面的代码来载入该模型并进行文本表征向量的提取: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] |
|
|
|
model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v2') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## 2. HuggingFace Transformers |
|
|
|
如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-general-v2') |
|
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-general-v2') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Evaluation |
|
|
|
该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数: |
|
|
|
| | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | |
|
| ---------------------------- | ------------ | ------------- | ---------- | ---------- | ------------ | ---------- | ---------- | |
|
| **sbert-chinese-general-v1** | **84.54%** | **82.17%** | 23.80% | 65.94% | 45.52% | 11.52% | 48.51% | |
|
| **sbert-chinese-general-v2** | 77.20% | 72.60% | **36.80%** | **76.92%** | **49.63%** | **16.24%** | **63.16%** | |
|
|
|
这里对比了本模型跟之前我们发布 [sbert-chinese-general-v1](https://huggingface.co./DMetaSoul/sbert-chinese-general-v1) 之间的差异,可以看到本模型在多个任务上的泛化能力更好。 |
|
|
|
## Citing & Authors |
|
|
|
E-mail: [email protected] |