lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5422
  • Answer: {'precision': 0.8987804878048781, 'recall': 0.9020807833537332, 'f1': 0.9004276114844226, 'number': 817}
  • Header: {'precision': 0.6528925619834711, 'recall': 0.6638655462184874, 'f1': 0.6583333333333333, 'number': 119}
  • Question: {'precision': 0.8772845953002611, 'recall': 0.935933147632312, 'f1': 0.9056603773584906, 'number': 1077}
  • Overall Precision: 0.8727
  • Overall Recall: 0.9061
  • Overall F1: 0.8891
  • Overall Accuracy: 0.8153

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4117 10.5263 200 1.1040 {'precision': 0.8423475258918297, 'recall': 0.8959608323133414, 'f1': 0.8683274021352312, 'number': 817} {'precision': 0.4925373134328358, 'recall': 0.5546218487394958, 'f1': 0.5217391304347825, 'number': 119} {'precision': 0.8823529411764706, 'recall': 0.8913649025069638, 'f1': 0.8868360277136259, 'number': 1077} 0.8407 0.8733 0.8567 0.7772
0.0494 21.0526 400 1.4246 {'precision': 0.8377142857142857, 'recall': 0.8971848225214198, 'f1': 0.8664302600472813, 'number': 817} {'precision': 0.5655737704918032, 'recall': 0.5798319327731093, 'f1': 0.5726141078838175, 'number': 119} {'precision': 0.8783542039355993, 'recall': 0.9117920148560817, 'f1': 0.894760820045558, 'number': 1077} 0.8435 0.8862 0.8643 0.7895
0.0149 31.5789 600 1.3688 {'precision': 0.8272827282728272, 'recall': 0.9204406364749081, 'f1': 0.8713789107763616, 'number': 817} {'precision': 0.6436781609195402, 'recall': 0.47058823529411764, 'f1': 0.5436893203883495, 'number': 119} {'precision': 0.8790613718411552, 'recall': 0.904363974001857, 'f1': 0.891533180778032, 'number': 1077} 0.8470 0.8852 0.8657 0.8066
0.0074 42.1053 800 1.5512 {'precision': 0.8574739281575898, 'recall': 0.9057527539779682, 'f1': 0.880952380952381, 'number': 817} {'precision': 0.6140350877192983, 'recall': 0.5882352941176471, 'f1': 0.6008583690987125, 'number': 119} {'precision': 0.8713656387665198, 'recall': 0.9182915506035283, 'f1': 0.8942133815551537, 'number': 1077} 0.8518 0.8937 0.8722 0.7908
0.004 52.6316 1000 1.5808 {'precision': 0.8884892086330936, 'recall': 0.9069767441860465, 'f1': 0.8976377952755905, 'number': 817} {'precision': 0.6239316239316239, 'recall': 0.6134453781512605, 'f1': 0.6186440677966102, 'number': 119} {'precision': 0.8902991840435177, 'recall': 0.9117920148560817, 'f1': 0.9009174311926607, 'number': 1077} 0.8744 0.8922 0.8832 0.8017
0.0025 63.1579 1200 1.6746 {'precision': 0.8933333333333333, 'recall': 0.9020807833537332, 'f1': 0.8976857490864798, 'number': 817} {'precision': 0.5873015873015873, 'recall': 0.6218487394957983, 'f1': 0.6040816326530611, 'number': 119} {'precision': 0.8998194945848376, 'recall': 0.9257195914577531, 'f1': 0.9125858123569794, 'number': 1077} 0.8781 0.8982 0.8880 0.7978
0.0014 73.6842 1400 1.5175 {'precision': 0.8628841607565012, 'recall': 0.8935128518971848, 'f1': 0.8779314491882141, 'number': 817} {'precision': 0.5833333333333334, 'recall': 0.5882352941176471, 'f1': 0.5857740585774059, 'number': 119} {'precision': 0.8736933797909407, 'recall': 0.9312906220984215, 'f1': 0.9015730337078652, 'number': 1077} 0.8529 0.8957 0.8738 0.8073
0.0007 84.2105 1600 1.5422 {'precision': 0.8987804878048781, 'recall': 0.9020807833537332, 'f1': 0.9004276114844226, 'number': 817} {'precision': 0.6528925619834711, 'recall': 0.6638655462184874, 'f1': 0.6583333333333333, 'number': 119} {'precision': 0.8772845953002611, 'recall': 0.935933147632312, 'f1': 0.9056603773584906, 'number': 1077} 0.8727 0.9061 0.8891 0.8153
0.0007 94.7368 1800 1.6505 {'precision': 0.8702380952380953, 'recall': 0.8947368421052632, 'f1': 0.8823174411587205, 'number': 817} {'precision': 0.5703125, 'recall': 0.6134453781512605, 'f1': 0.5910931174089069, 'number': 119} {'precision': 0.8894927536231884, 'recall': 0.9117920148560817, 'f1': 0.9005043558000918, 'number': 1077} 0.8620 0.8872 0.8744 0.8034
0.0007 105.2632 2000 1.6541 {'precision': 0.8685446009389671, 'recall': 0.9057527539779682, 'f1': 0.8867585380467345, 'number': 817} {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119} {'precision': 0.8938700823421775, 'recall': 0.9071494893221913, 'f1': 0.9004608294930875, 'number': 1077} 0.8688 0.8847 0.8767 0.8024
0.0004 115.7895 2200 1.6276 {'precision': 0.866902237926973, 'recall': 0.9008567931456548, 'f1': 0.8835534213685473, 'number': 817} {'precision': 0.64, 'recall': 0.5378151260504201, 'f1': 0.5844748858447488, 'number': 119} {'precision': 0.8941704035874439, 'recall': 0.9257195914577531, 'f1': 0.9096715328467153, 'number': 1077} 0.8706 0.8927 0.8815 0.8082
0.0003 126.3158 2400 1.6682 {'precision': 0.8790419161676647, 'recall': 0.8984088127294981, 'f1': 0.8886198547215496, 'number': 817} {'precision': 0.5964912280701754, 'recall': 0.5714285714285714, 'f1': 0.5836909871244635, 'number': 119} {'precision': 0.8928892889288929, 'recall': 0.9210770659238626, 'f1': 0.9067641681901281, 'number': 1077} 0.8709 0.8912 0.8809 0.8042

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cpu
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
90
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Cuma/lilt-en-funsd

Finetuned
(47)
this model