Tiny-moe

Tiny-moe is a Mixture of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: Corianas/Tiny_Test
gate_mode: cheap_embed # one of "hidden", "cheap_embed", or "random"
dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
## (optional)
# experts_per_token: 2
experts:
  - source_model: Corianas/Tiny_Test
    positive_prompts:
      - "↨once upon a time"
    ## (optional)
    # negative_prompts:
    #   - "This is a prompt expert_model_1 should not be used for"
  - source_model: Corianas/TinyTask-minipaca
  # ... and so on
    positive_prompts:
    - "↨please"

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Corianas/Tiny-moe"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
10
Safetensors
Model size
148M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Corianas/Tiny-Moe