File size: 3,092 Bytes
abbfbb8
43d9498
 
 
abbfbb8
43d9498
 
 
 
 
 
 
 
 
 
 
 
 
 
8101fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43d9498
1661c71
43d9498
 
 
 
 
 
8101fb9
43d9498
 
 
8101fb9
 
 
 
 
 
43d9498
 
 
 
 
8101fb9
43d9498
 
 
8101fb9
 
 
 
 
 
43d9498
 
 
 
 
8101fb9
43d9498
 
8101fb9
 
 
 
 
 
43d9498
abbfbb8
1661c71
abbfbb8
43d9498
abbfbb8
43d9498
abbfbb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
language:
- en
license: apache-2.0
tags:
- t5-small
- text2text-generation
- natural language understanding
- conversational system
- task-oriented dialog
datasets:
- ConvLab/multiwoz21
- ConvLab/sgd
- ConvLab/tm1
- ConvLab/tm2
- ConvLab/tm3
metrics:
- Slot Error Rate
- sacrebleu
widget:
- text: 'multiwoz21: user: I would like a taxi from Saint John''s college to Pizza
    Hut Fen Ditton.'
  example_title: MultiWOZ 2.1
- text: 'sgd: user: Could you get me a reservation at P.f. Chang''s in Corte Madera
    at afternoon 12?'
  example_title: Schema-Guided Dialog
- text: 'tm1: user: I would like to order a pizza from Domino''s.'
  example_title: Taskmaster-1
- text: 'tm2: user: I would like help getting a flight from LA to Amsterdam.'
  example_title: Taskmaster-2
- text: 'tm3: user: Well, I need a kids friendly movie. I was thinking about seeing
    Mulan.'
  example_title: Taskmaster-3
inference:
  parameters:
    max_length: 100
base_model: t5-small
model-index:
- name: t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3
  results:
  - task:
      type: text2text-generation
      name: natural language understanding
    dataset:
      name: MultiWOZ 2.1
      type: ConvLab/multiwoz21
      split: test
      revision: 5f55375edbfe0270c20bcf770751ad982c0e6614
    metrics:
    - type: Dialog acts Accuracy
      value: 77.5
      name: Accuracy
    - type: Dialog acts F1
      value: 86.4
      name: F1
  - task:
      type: text2text-generation
      name: natural language understanding
    dataset:
      name: SGD
      type: ConvLab/sgd
      split: test
      revision: 6e8c79b888b21cc658cf9c0ce128d263241cf70f
    metrics:
    - type: Dialog acts Accuracy
      value: 45.2
      name: Accuracy
    - type: Dialog acts F1
      value: 58.6
      name: F1
  - task:
      type: text2text-generation
      name: natural language understanding
    dataset:
      name: TM1+TM2+TM3
      type: ConvLab/tm1, ConvLab/tm2, ConvLab/tm3
      split: test
    metrics:
    - type: Dialog acts Accuracy
      value: 81.8
      name: Accuracy
    - type: Dialog acts F1
      value: 73.0
      name: F1
---

# t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3

This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on [MultiWOZ 2.1](https://huggingface.co./datasets/ConvLab/multiwoz21), [Schema-Guided Dialog](https://huggingface.co./datasets/ConvLab/sgd), [Taskmaster-1](https://huggingface.co./datasets/ConvLab/tm1), [Taskmaster-2](https://huggingface.co./datasets/ConvLab/tm2), and [Taskmaster-3](https://huggingface.co./datasets/ConvLab/tm3).

Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 10.0

### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0