librarian-bot commited on
Commit
8101fb9
·
1 Parent(s): 430e685

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`t5-small`](https://huggingface.co./t5-small) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co./spaces/librarian-bots/base_model_explorer).

This PR comes courtesy of [Librarian Bot](https://huggingface.co./librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co./davanstrien). Your input is invaluable to us!

Files changed (1) hide show
  1. README.md +39 -39
README.md CHANGED
@@ -17,7 +17,24 @@ datasets:
17
  metrics:
18
  - Slot Error Rate
19
  - sacrebleu
20
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  model-index:
22
  - name: t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3
23
  results:
@@ -25,63 +42,46 @@ model-index:
25
  type: text2text-generation
26
  name: natural language understanding
27
  dataset:
28
- type: ConvLab/multiwoz21
29
  name: MultiWOZ 2.1
 
30
  split: test
31
  revision: 5f55375edbfe0270c20bcf770751ad982c0e6614
32
  metrics:
33
- - type: Dialog acts Accuracy
34
- value: 77.5
35
- name: Accuracy
36
- - type: Dialog acts F1
37
- value: 86.4
38
- name: F1
39
  - task:
40
  type: text2text-generation
41
  name: natural language understanding
42
  dataset:
43
- type: ConvLab/sgd
44
  name: SGD
 
45
  split: test
46
  revision: 6e8c79b888b21cc658cf9c0ce128d263241cf70f
47
  metrics:
48
- - type: Dialog acts Accuracy
49
- value: 45.2
50
- name: Accuracy
51
- - type: Dialog acts F1
52
- value: 58.6
53
- name: F1
54
  - task:
55
  type: text2text-generation
56
  name: natural language understanding
57
  dataset:
58
- type: ConvLab/tm1, ConvLab/tm2, ConvLab/tm3
59
  name: TM1+TM2+TM3
 
60
  split: test
61
  metrics:
62
- - type: Dialog acts Accuracy
63
- value: 81.8
64
- name: Accuracy
65
- - type: Dialog acts F1
66
- value: 73.0
67
- name: F1
68
-
69
- widget:
70
- - text: "multiwoz21: user: I would like a taxi from Saint John's college to Pizza Hut Fen Ditton."
71
- example_title: "MultiWOZ 2.1"
72
- - text: "sgd: user: Could you get me a reservation at P.f. Chang's in Corte Madera at afternoon 12?"
73
- example_title: "Schema-Guided Dialog"
74
- - text: "tm1: user: I would like to order a pizza from Domino's."
75
- example_title: "Taskmaster-1"
76
- - text: "tm2: user: I would like help getting a flight from LA to Amsterdam."
77
- example_title: "Taskmaster-2"
78
- - text: "tm3: user: Well, I need a kids friendly movie. I was thinking about seeing Mulan."
79
- example_title: "Taskmaster-3"
80
-
81
- inference:
82
- parameters:
83
- max_length: 100
84
-
85
  ---
86
 
87
  # t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3
 
17
  metrics:
18
  - Slot Error Rate
19
  - sacrebleu
20
+ widget:
21
+ - text: 'multiwoz21: user: I would like a taxi from Saint John''s college to Pizza
22
+ Hut Fen Ditton.'
23
+ example_title: MultiWOZ 2.1
24
+ - text: 'sgd: user: Could you get me a reservation at P.f. Chang''s in Corte Madera
25
+ at afternoon 12?'
26
+ example_title: Schema-Guided Dialog
27
+ - text: 'tm1: user: I would like to order a pizza from Domino''s.'
28
+ example_title: Taskmaster-1
29
+ - text: 'tm2: user: I would like help getting a flight from LA to Amsterdam.'
30
+ example_title: Taskmaster-2
31
+ - text: 'tm3: user: Well, I need a kids friendly movie. I was thinking about seeing
32
+ Mulan.'
33
+ example_title: Taskmaster-3
34
+ inference:
35
+ parameters:
36
+ max_length: 100
37
+ base_model: t5-small
38
  model-index:
39
  - name: t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3
40
  results:
 
42
  type: text2text-generation
43
  name: natural language understanding
44
  dataset:
 
45
  name: MultiWOZ 2.1
46
+ type: ConvLab/multiwoz21
47
  split: test
48
  revision: 5f55375edbfe0270c20bcf770751ad982c0e6614
49
  metrics:
50
+ - type: Dialog acts Accuracy
51
+ value: 77.5
52
+ name: Accuracy
53
+ - type: Dialog acts F1
54
+ value: 86.4
55
+ name: F1
56
  - task:
57
  type: text2text-generation
58
  name: natural language understanding
59
  dataset:
 
60
  name: SGD
61
+ type: ConvLab/sgd
62
  split: test
63
  revision: 6e8c79b888b21cc658cf9c0ce128d263241cf70f
64
  metrics:
65
+ - type: Dialog acts Accuracy
66
+ value: 45.2
67
+ name: Accuracy
68
+ - type: Dialog acts F1
69
+ value: 58.6
70
+ name: F1
71
  - task:
72
  type: text2text-generation
73
  name: natural language understanding
74
  dataset:
 
75
  name: TM1+TM2+TM3
76
+ type: ConvLab/tm1, ConvLab/tm2, ConvLab/tm3
77
  split: test
78
  metrics:
79
+ - type: Dialog acts Accuracy
80
+ value: 81.8
81
+ name: Accuracy
82
+ - type: Dialog acts F1
83
+ value: 73.0
84
+ name: F1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  ---
86
 
87
  # t5-small-nlu-multiwoz21_sgd_tm1_tm2_tm3