vit-cxr4-384
This model is a fine-tuned version of google/vit-base-patch16-384 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2413
- Precision: 0.8525
- Recall: 0.9419
- F1: 0.8950
- Accuracy: 0.8926
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 17
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3694 | 0.08 | 100 | 0.3851 | 0.8076 | 0.8435 | 0.8251 | 0.8234 |
0.3084 | 0.16 | 200 | 0.4478 | 0.7556 | 0.9889 | 0.8566 | 0.8364 |
0.3177 | 0.24 | 300 | 0.3073 | 0.8062 | 0.9572 | 0.8752 | 0.8652 |
0.3413 | 0.31 | 400 | 0.2936 | 0.8172 | 0.9434 | 0.8758 | 0.8678 |
0.2612 | 0.39 | 500 | 0.2936 | 0.8402 | 0.9122 | 0.8747 | 0.8709 |
0.3607 | 0.47 | 600 | 0.2717 | 0.8210 | 0.9603 | 0.8852 | 0.8769 |
0.274 | 0.55 | 700 | 0.2875 | 0.8373 | 0.9196 | 0.8765 | 0.8720 |
0.3127 | 0.63 | 800 | 0.2664 | 0.8156 | 0.9683 | 0.8854 | 0.8761 |
0.2875 | 0.71 | 900 | 0.2643 | 0.8369 | 0.9334 | 0.8825 | 0.8772 |
0.2652 | 0.78 | 1000 | 0.2659 | 0.8134 | 0.9683 | 0.8841 | 0.8746 |
0.2661 | 0.86 | 1100 | 0.2591 | 0.8334 | 0.9445 | 0.8855 | 0.8793 |
0.3019 | 0.94 | 1200 | 0.2729 | 0.8851 | 0.8599 | 0.8723 | 0.8756 |
0.229 | 1.02 | 1300 | 0.2548 | 0.8357 | 0.9603 | 0.8937 | 0.8871 |
0.1841 | 1.1 | 1400 | 0.2438 | 0.8586 | 0.9217 | 0.8891 | 0.8863 |
0.2257 | 1.18 | 1500 | 0.2365 | 0.8629 | 0.9254 | 0.8931 | 0.8905 |
0.2217 | 1.25 | 1600 | 0.2509 | 0.8888 | 0.8662 | 0.8773 | 0.8803 |
0.2619 | 1.33 | 1700 | 0.2588 | 0.8373 | 0.9582 | 0.8937 | 0.8874 |
0.2222 | 1.41 | 1800 | 0.2521 | 0.8644 | 0.9238 | 0.8931 | 0.8908 |
0.2044 | 1.49 | 1900 | 0.2598 | 0.8409 | 0.9588 | 0.8960 | 0.8900 |
0.2238 | 1.57 | 2000 | 0.2641 | 0.9117 | 0.8302 | 0.8691 | 0.8764 |
0.249 | 1.65 | 2100 | 0.2368 | 0.8464 | 0.9561 | 0.8979 | 0.8926 |
0.1773 | 1.72 | 2200 | 0.2233 | 0.8682 | 0.9265 | 0.8964 | 0.8942 |
0.1447 | 1.8 | 2300 | 0.2269 | 0.8760 | 0.9191 | 0.8970 | 0.8957 |
0.245 | 1.88 | 2400 | 0.2355 | 0.8578 | 0.9445 | 0.8991 | 0.8952 |
0.1685 | 1.96 | 2500 | 0.2312 | 0.8615 | 0.9344 | 0.8965 | 0.8934 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Coelhomatias/vit-cxr4-384
Base model
google/vit-base-patch16-384