|
# This model predicts the sentiment('Negative'/'Positive') for the input sentence. It is fine-tuned mt5-small |
|
|
|
The present model supports 6 languages - |
|
1) English |
|
2) Hindi |
|
3) German |
|
4) Korean |
|
5) Japanese |
|
6) Portuguese |
|
|
|
Here is how to use this model |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
import torch |
|
model = AutoModelForSeq2SeqLM.from_pretrained("Chirayu/mt5-multilingual-sentiment") |
|
tokenizer = AutoTokenizer.from_pretrained("Chirayu/mt5-multilingual-sentiment") |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = model.to(device) |
|
|
|
def get_sentiment(text, num_beams=2,max_length=512, repetition_penalty=2.5, length_penalty=1, early_stopping=True,top_p=.95, top_k=50, num_return_sequences=1): |
|
|
|
input_ids = tokenizer.encode( |
|
text, return_tensors="pt", add_special_tokens=True |
|
) |
|
|
|
input_ids = input_ids.to(device) |
|
generated_ids = model.generate( |
|
input_ids=input_ids, |
|
|
|
num_beams=num_beams, |
|
max_length=max_length, |
|
repetition_penalty=repetition_penalty, |
|
length_penalty=length_penalty, |
|
early_stopping=early_stopping, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_return_sequences=num_return_sequences, |
|
) |
|
sentiment = [tokenizer.decode(generated_id,skip_special_tokens=True,clean_up_tokenization_spaces=True,) for generated_id in generated_ids] |
|
return sentiment |
|
``` |