SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Cheselle/finetuned-arctic")
# Run inference
sentences = [
'How can information security measures be applied to maintain the integrity and confidentiality of GAI models and systems?',
'vulnerabilities in systems (hardware, software, data) and write code to exploit them. Sophisticated threat \nactors might further these risks by developing GAI-powered security co-pilots for use in several parts of \nthe attack chain, including informing attackers on how to proactively evade threat detection and escalate \nprivileges after gaining system access. \nInformation security for GAI models and systems also includes maintaining availability of the GAI system \nand the integrity and (when applicable) the confidentiality of the GAI code, training data, and model \nweights. To identify and secure potential attack points in AI systems or specific components of the AI \n \n \n12 See also https://doi.org/10.6028/NIST.AI.100-4, to be published.',
"27 \nMP-4.1-010 \nConduct appropriate diligence on training data use to assess intellectual property, \nand privacy, risks, including to examine whether use of proprietary or sensitive \ntraining data is consistent with applicable laws. \nIntellectual Property; Data Privacy \nAI Actor Tasks: Governance and Oversight, Operation and Monitoring, Procurement, Third-party entities \n \nMAP 5.1: Likelihood and magnitude of each identified impact (both potentially beneficial and harmful) based on expected use, past \nuses of AI systems in similar contexts, public incident reports, feedback from those external to the team that developed or deployed \nthe AI system, or other data are identified and documented. \nAction ID \nSuggested Action \nGAI Risks \nMP-5.1-001 Apply TEVV practices for content provenance (e.g., probing a system's synthetic \ndata generation capabilities for potential misuse or vulnerabilities. \nInformation Integrity; Information \nSecurity \nMP-5.1-002",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.81 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.99 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.81 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.198 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.81 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.99 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9168 |
cosine_mrr@10 | 0.8887 |
cosine_map@100 | 0.8887 |
dot_accuracy@1 | 0.81 |
dot_accuracy@3 | 0.96 |
dot_accuracy@5 | 0.99 |
dot_accuracy@10 | 1.0 |
dot_precision@1 | 0.81 |
dot_precision@3 | 0.32 |
dot_precision@5 | 0.198 |
dot_precision@10 | 0.1 |
dot_recall@1 | 0.81 |
dot_recall@3 | 0.96 |
dot_recall@5 | 0.99 |
dot_recall@10 | 1.0 |
dot_ndcg@10 | 0.9168 |
dot_mrr@10 | 0.8887 |
dot_map@100 | 0.8887 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 600 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 600 samples:
sentence_0 sentence_1 type string string details - min: 12 tokens
- mean: 21.75 tokens
- max: 38 tokens
- min: 21 tokens
- mean: 177.81 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 What is the title of the publication related to Artificial Intelligence Risk Management by NIST?
NIST Trustworthy and Responsible AI
NIST AI 600-1
Artificial Intelligence Risk Management
Framework: Generative Artificial
Intelligence Profile
This publication is available free of charge from:
https://doi.org/10.6028/NIST.AI.600-1Where can the NIST AI 600-1 publication be accessed for free?
NIST Trustworthy and Responsible AI
NIST AI 600-1
Artificial Intelligence Risk Management
Framework: Generative Artificial
Intelligence Profile
This publication is available free of charge from:
https://doi.org/10.6028/NIST.AI.600-1What is the title of the publication released by NIST in July 2024 regarding artificial intelligence?
NIST Trustworthy and Responsible AI
NIST AI 600-1
Artificial Intelligence Risk Management
Framework: Generative Artificial
Intelligence Profile
This publication is available free of charge from:
https://doi.org/10.6028/NIST.AI.600-1
July 2024
U.S. Department of Commerce
Gina M. Raimondo, Secretary
National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 20per_device_eval_batch_size
: 20num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 20per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 30 | 0.8699 |
1.6667 | 50 | 0.8879 |
2.0 | 60 | 0.8887 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Cheselle/finetuned-arctic
Base model
Snowflake/snowflake-arctic-embed-mEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.810
- Cosine Accuracy@3 on Unknownself-reported0.960
- Cosine Accuracy@5 on Unknownself-reported0.990
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.810
- Cosine Precision@3 on Unknownself-reported0.320
- Cosine Precision@5 on Unknownself-reported0.198
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.810
- Cosine Recall@3 on Unknownself-reported0.960