Model based on

Ko-GPT-Trinity 1.2B (v0.5)

Example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM 

tokenizer = AutoTokenizer.from_pretrained(
    "CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper",
    revision="punct_wrapper-related_words-overfit",  # or punct_wrapper-related_words-minevalloss
    bos_token="<s>",
    eos_token="</s>",
    unk_token="<unk>",
    pad_token="<pad>",
    mask_token="<mask>",
)
model = AutoModelForCausalLM.from_pretrained(
    "CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper",
    revision="punct_wrapper-related_words-overfit",  # or punct_wrapper-related_words-minevalloss
    pad_token_id=tokenizer.eos_token_id,
).to(device="cuda")
model.eval()

prompt = "์„์–‘์ด ๋ณด์ด๋Š” ๊ฒฝ์น˜"
wrapped_prompt = f"@{prompt}@<usr>\n"
with torch.no_grad():
    tokens = tokenizer.encode(wrapped_prompt, return_tensors="pt").to(device="cuda")
    gen_tokens = model.generate(
        tokens,
        max_length=64,
        repetition_penalty=2.0,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
        bos_token_id=tokenizer.bos_token_id,
        top_k=16,
        top_p=0.8,
    )
    generated = tokenizer.decode(gen_tokens[0][len(tokens[0]):])
 
print(generated)
# ํ•ด๊ฐ€ ์ง€๊ณ  ์žˆ์„ ๋ฌด๋ ต
# ๋‚˜๋Š” ์„์–‘์„ ๋ณด๋Ÿฌ ๊ฐ„๋‹ค
# ๋ถ‰์€ ํ•˜๋Š˜๊ณผ ํ•˜์–€ ๊ตฌ๋ฆ„์ด ๋‚˜๋ฅผ ๋ฐ˜๊ฒจ์ค„ ๊ฒƒ ๊ฐ™์•„์„œ๋ฆฌ
# ํ•˜์ง€๋งŒ ๋‚ด๊ฐ€ ๋ณธ ํ•ด๋Š” ์ €๋ฌผ์–ด๋งŒ ๊ฐ€๊ณ 
# ๊ตฌ๋ฆ„๋งˆ์ € ์ž์ทจ๋ฅผ ๊ฐ์ถ˜ ์–ด๋‘ ๋งŒ์ด ๋‚จ์•„์žˆ์„ ๋ฟ์ด๋„ค
# ๋‚ด๊ฐ€ ํƒ„ ๋ฐฐ๋Š” ๋ณด์ด์ง€๋„ ์•Š๊ณ 
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.