CheeLi03's picture
Upload tokenizer
f93a75c verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - ar
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base Arabic - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: ar_eg
          split: None
          args: 'config: ar split: test'
        metrics:
          - type: wer
            value: 41.818636022982766
            name: Wer

Whisper Base Arabic - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8130
  • Wer: 41.8186

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1475 6.6667 1000 0.5516 41.1441
0.0072 13.3333 2000 0.6801 40.6570
0.0023 20.0 3000 0.7548 40.9443
0.0013 26.6667 4000 0.7970 41.4439
0.0009 33.3333 5000 0.8130 41.8186

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1