whisper-medium-en / README.md
CheeLi03's picture
Upload tokenizer
118c4f7 verified
metadata
base_model: openai/whisper-medium
datasets:
  - fleurs
language:
  - en
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Medium English - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: en_us
          split: None
          args: 'config: en split: test'
        metrics:
          - type: wer
            value: 7.1528165086447295
            name: Wer

Whisper Medium English - Chee Li

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3285
  • Wer: 7.1528

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.005 5.3191 1000 0.2599 6.9576
0.0002 10.6383 2000 0.3051 7.1946
0.0001 15.9574 3000 0.3228 7.2295
0.0001 21.2766 4000 0.3285 7.1528

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1