whisper-base-tr-8 / README.md
CheeLi03's picture
Upload tokenizer
59cc19b verified
|
raw
history blame
2.27 kB
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - tr
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base Turkish 8000 - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: tr_tr
          split: None
          args: 'config: tr split: test'
        metrics:
          - type: wer
            value: 25.847853142501553
            name: Wer

Whisper Base Turkish 8000 - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5649
  • Wer: 25.8479

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 850
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1634 5.5866 1000 0.4092 24.8833
0.0075 11.1732 2000 0.4509 24.2066
0.0024 16.7598 3000 0.4874 24.1910
0.0012 22.3464 4000 0.5125 24.3777
0.0008 27.9330 5000 0.5305 24.5644
0.0005 33.5196 6000 0.5473 24.8289
0.0004 39.1061 7000 0.5592 24.9922
0.0003 44.6927 8000 0.5649 25.8479

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1