|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: weather-base |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: dataset |
|
split: train |
|
args: dataset |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9358600583090378 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# weather-base |
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co./microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2184 |
|
- Accuracy: 0.9359 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.3368 | 1.0 | 171 | 0.2780 | 0.9009 | |
|
| 0.2129 | 2.0 | 342 | 0.2333 | 0.9300 | |
|
| 0.1827 | 3.0 | 513 | 0.2440 | 0.9213 | |
|
| 0.1475 | 4.0 | 684 | 0.2306 | 0.9315 | |
|
| 0.1284 | 5.0 | 855 | 0.2192 | 0.9359 | |
|
| 0.0526 | 6.0 | 1026 | 0.2184 | 0.9359 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|