OpenELM-1_1B-DPO-full-least-similar

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0828
  • Rewards/chosen: -3.9844
  • Rewards/rejected: -4.25
  • Rewards/accuracies: 0.5
  • Rewards/margins: 0.25
  • Logps/rejected: -712.0
  • Logps/chosen: -716.0
  • Logits/rejected: -7.0
  • Logits/chosen: -7.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.1874 0.1047 100 0.6751 -0.4551 -0.5703 0.5430 0.1152 -346.0 -364.0 -14.4375 -14.5625
0.1191 0.2094 200 0.7004 -0.7305 -0.8242 0.5215 0.0962 -372.0 -392.0 -12.4375 -12.625
0.1411 0.3141 300 0.7418 -0.9688 -1.0547 0.4766 0.0894 -394.0 -416.0 -12.25 -12.625
0.1554 0.4188 400 0.7757 -1.8906 -1.9609 0.4941 0.0688 -484.0 -508.0 -12.0625 -12.4375
0.1334 0.5236 500 0.8440 -1.8906 -1.9297 0.4805 0.0405 -482.0 -508.0 -14.75 -15.0625
0.1429 0.6283 600 0.8180 -1.6406 -1.6875 0.5078 0.0515 -458.0 -482.0 -14.625 -14.875
0.1228 0.7330 700 0.8036 -1.5625 -1.7266 0.5 0.1611 -460.0 -474.0 -14.0625 -14.4375
0.1182 0.8377 800 0.8425 -1.8438 -1.9141 0.5078 0.0664 -480.0 -504.0 -14.875 -15.125
0.1471 0.9424 900 0.8238 -2.4219 -2.5312 0.5039 0.0991 -540.0 -560.0 -13.625 -13.9375
0.0251 1.0471 1000 0.8727 -2.2969 -2.4219 0.4805 0.1289 -532.0 -548.0 -14.0 -14.25
0.033 1.1518 1100 0.8287 -2.0625 -2.1094 0.5078 0.0503 -500.0 -524.0 -13.75 -14.125
0.0204 1.2565 1200 0.8519 -2.3281 -2.4688 0.5312 0.1377 -536.0 -552.0 -11.125 -11.9375
0.0168 1.3613 1300 0.8707 -2.8906 -3.0625 0.5098 0.1748 -596.0 -608.0 -8.9375 -9.8125
0.0183 1.4660 1400 0.9055 -2.625 -2.7344 0.5 0.1172 -564.0 -580.0 -11.5625 -12.125
0.0258 1.5707 1500 0.8797 -2.3906 -2.4531 0.5098 0.0630 -536.0 -556.0 -12.1875 -12.625
0.0168 1.6754 1600 0.9114 -2.9844 -3.125 0.5059 0.1338 -600.0 -616.0 -10.4375 -11.0
0.0313 1.7801 1700 0.9136 -2.6562 -2.7344 0.5020 0.0781 -564.0 -584.0 -8.5625 -9.25
0.0207 1.8848 1800 0.9314 -3.0781 -3.2188 0.5059 0.1289 -612.0 -628.0 -8.6875 -9.5
0.0155 1.9895 1900 0.9222 -3.2344 -3.375 0.5059 0.1416 -628.0 -640.0 -5.75 -6.6562
0.0013 2.0942 2000 0.9954 -3.4844 -3.6719 0.5020 0.1885 -656.0 -668.0 -6.625 -7.5312
0.0018 2.1990 2100 1.0399 -3.6562 -3.875 0.4980 0.2119 -676.0 -684.0 -6.75 -7.5938
0.0012 2.3037 2200 1.0474 -3.8125 -4.0312 0.5 0.2363 -692.0 -700.0 -7.25 -8.0625
0.0012 2.4084 2300 1.0703 -3.9531 -4.1875 0.4922 0.2451 -708.0 -712.0 -7.125 -7.9688
0.0014 2.5131 2400 1.0872 -4.0312 -4.3125 0.4980 0.2598 -720.0 -724.0 -7.125 -8.0
0.0013 2.6178 2500 1.0783 -3.9688 -4.2188 0.5020 0.2490 -712.0 -716.0 -6.9375 -7.8125
0.001 2.7225 2600 1.0849 -4.0 -4.25 0.5020 0.2520 -712.0 -720.0 -6.9688 -7.8438
0.0008 2.8272 2700 1.0824 -3.9844 -4.25 0.4980 0.2520 -712.0 -716.0 -7.0 -7.875
0.0007 2.9319 2800 1.0828 -3.9844 -4.25 0.5 0.25 -712.0 -716.0 -7.0 -7.875

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.3.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
10
Safetensors
Model size
1.08B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.