InstantID / handler.py
yamildiego's picture
pose
edb4ffd
raw
history blame
11.9 kB
# from typing import List, Any
# import torch
# from diffusers import StableCascadePriorPipeline, StableCascadeDecoderPipeline
# # Configurar el dispositivo para ejecutar el modelo
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# if device.type != 'cuda':
# raise ValueError("Se requiere ejecutar en GPU")
# # Configurar el tipo de dato mixto basado en la capacidad de la GPU
# dtype = torch.bfloat16 if torch.cuda.get_device_capability(device.index)[0] >= 8 else torch.float16
# start_test
import cv2
import numpy as np
import diffusers
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
import torch
import torch.nn.functional as F
from torchvision.transforms import Compose
import PIL
from PIL import Image
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
from controlnet_aux import OpenposeDetector
from huggingface_hub import hf_hub_download
# end_test
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("Se requiere ejecutar en GPU")
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
class EndpointHandler():
def __init__(self, model_dir):
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
local_dir="./checkpoints",
)
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
print("Model dir: ", model_dir)
face_adapter = f"./checkpoints/ip-adapter.bin"
controlnet_path = f"./checkpoints/ControlNetModel"
# transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
# ])
self.controlnet_identitynet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=dtype
)
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=[self.controlnet_identitynet],
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
# load and disable LCM
self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
self.pipe.disable_lora()
self.pipe.cuda()
self.pipe.load_ip_adapter_instantid(face_adapter)
self.pipe.image_proj_model.to("cuda")
self.pipe.unet.to("cuda")
# controlnet-pose/canny/depth
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
# controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
# controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
controlnet_pose = ControlNetModel.from_pretrained(
controlnet_pose_model, torch_dtype=dtype
).to(device)
# controlnet_canny = ControlNetModel.from_pretrained(
# controlnet_canny_model, torch_dtype=dtype
# ).to(device)
# controlnet_depth = ControlNetModel.from_pretrained(
# controlnet_depth_model, torch_dtype=dtype
# ).to(device)
# def get_canny_image(image, t1=100, t2=200):
# image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# edges = cv2.Canny(image, t1, t2)
# return Image.fromarray(edges, "L")
# def get_depth_map(image):
# image = np.array(image) / 255.0
# h, w = image.shape[:2]
# image = transform({'image': image})['image']
# image = torch.from_numpy(image).unsqueeze(0).to("cuda")
# with torch.no_grad():
# depth = depth_anything(image)
# depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
# depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
# depth = depth.cpu().numpy().astype(np.uint8)
# depth_image = Image.fromarray(depth)
# return depth_image
self.controlnet_map = {
"pose": controlnet_pose,
# "canny": controlnet_canny,
# "depth": controlnet_depth,
}
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval()
self.controlnet_map_fn = {
"pose": openpose,
# "canny": get_canny_image,
# "depth": get_depth_map,
}
self.app = FaceAnalysis(name="buffalo_l", root="./", providers=["CPUExecutionProvider"])
self.app.prepare(ctx_id=0, det_size=(640, 640))
def __call__(self, param):
self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
self.pipe.enable_lora()
adapter_strength_ratio = 0.8
identitynet_strength_ratio = 0.8
pose_strength = 0.4
# canny_strength = 0.3
# depth_strength = 0.5
controlnet_selection = ["pose"]
# controlnet_selection = ["pose", "canny", "depth"]
face_image_path = "https://i.ibb.co/SKg69dD/kaifu-resize.png"
pose_image_path = "https://i.ibb.co/ZSrQ8ZJ/pose.jpg"
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
# check if the input is valid
# if face_image_path is None:
# raise gr.Error(
# f"Cannot find any input face image! Please upload the face image"
# )
# check the prompt
# if prompt is None:
prompt = "a person"
negative_prompt=""
# apply the style template
# prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
face_image = load_image(face_image_path)
face_image = resize_img(face_image, max_side=1024)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = self.app.get(face_image_cv2)
print(len(face_info))
print("error si no hay face")
# if len(face_info) == 0:
# raise gr.Error(
# f"Unable to detect a face in the image. Please upload a different photo with a clear face."
# )
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[
-1
] # only use the maximum face
face_emb = face_info["embedding"]
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
img_controlnet = face_image
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = self.app.get(pose_image_cv2)
# get error if no face is detected
# if len(face_info) == 0:
# raise gr.Error(
# f"Cannot find any face in the reference image! Please upload another person image"
# )
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
if len(controlnet_selection) > 0:
controlnet_scales = {
"pose": pose_strength,
# "canny": canny_strength,
# "depth": depth_strength,
}
self.pipe.controlnet = MultiControlNetModel(
[self.controlnet_identitynet]
+ [self.controlnet_map[s] for s in controlnet_selection]
)
control_scales = [float(identitynet_strength_ratio)] + [
controlnet_scales[s] for s in controlnet_selection
]
control_images = [face_kps] + [
self.controlnet_map_fn[s](img_controlnet).resize((width, height))
for s in controlnet_selection
]
else:
self.pipe.controlnet = self.controlnet_identitynet
control_scales = float(identitynet_strength_ratio)
control_images = face_kps
generator = torch.Generator(device=device.type).manual_seed(3)
print("Start inference...")
self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=control_scales,
num_inference_steps=30,
guidance_scale=7.5,
height=height,
width=width,
generator=generator,
).images
print("Inference done!")
return images[0]