File size: 11,945 Bytes
211dca2 36e90d6 6222926 663c56d 6222926 663c56d 6222926 36e90d6 663c56d aa1e467 36e90d6 c2e3cb4 211dca2 c2e3cb4 5e13943 27fc45c aa1e467 27fc45c 75c898e e3e308f 75c898e edb4ffd e3e308f edb4ffd e3e308f 211dca2 e3e308f 211dca2 e3e308f 211dca2 e3e308f 211dca2 e3e308f 211dca2 e3e308f 211dca2 e3e308f 211dca2 e3e308f 211dca2 e3e308f 211dca2 e3e308f 211dca2 edb4ffd e3e308f edb4ffd 75c898e edb4ffd e3e308f 75c898e edb4ffd e3e308f edb4ffd 8e23177 5af6b6d 75c898e 211dca2 bfe1bcd 0feaae9 211dca2 0feaae9 edb4ffd e3e308f edb4ffd e3e308f 211dca2 cab9284 211dca2 0feaae9 39435fd 0feaae9 211dca2 0feaae9 9ab3234 0feaae9 211dca2 0feaae9 edb4ffd 0feaae9 9ab3234 0feaae9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# from typing import List, Any
# import torch
# from diffusers import StableCascadePriorPipeline, StableCascadeDecoderPipeline
# # Configurar el dispositivo para ejecutar el modelo
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# if device.type != 'cuda':
# raise ValueError("Se requiere ejecutar en GPU")
# # Configurar el tipo de dato mixto basado en la capacidad de la GPU
# dtype = torch.bfloat16 if torch.cuda.get_device_capability(device.index)[0] >= 8 else torch.float16
# start_test
import cv2
import numpy as np
import diffusers
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
import torch
import torch.nn.functional as F
from torchvision.transforms import Compose
import PIL
from PIL import Image
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
from controlnet_aux import OpenposeDetector
from huggingface_hub import hf_hub_download
# end_test
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("Se requiere ejecutar en GPU")
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
class EndpointHandler():
def __init__(self, model_dir):
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
local_dir="./checkpoints",
)
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
print("Model dir: ", model_dir)
face_adapter = f"./checkpoints/ip-adapter.bin"
controlnet_path = f"./checkpoints/ControlNetModel"
# transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
# ])
self.controlnet_identitynet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=dtype
)
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=[self.controlnet_identitynet],
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
# load and disable LCM
self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
self.pipe.disable_lora()
self.pipe.cuda()
self.pipe.load_ip_adapter_instantid(face_adapter)
self.pipe.image_proj_model.to("cuda")
self.pipe.unet.to("cuda")
# controlnet-pose/canny/depth
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
# controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
# controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
controlnet_pose = ControlNetModel.from_pretrained(
controlnet_pose_model, torch_dtype=dtype
).to(device)
# controlnet_canny = ControlNetModel.from_pretrained(
# controlnet_canny_model, torch_dtype=dtype
# ).to(device)
# controlnet_depth = ControlNetModel.from_pretrained(
# controlnet_depth_model, torch_dtype=dtype
# ).to(device)
# def get_canny_image(image, t1=100, t2=200):
# image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# edges = cv2.Canny(image, t1, t2)
# return Image.fromarray(edges, "L")
# def get_depth_map(image):
# image = np.array(image) / 255.0
# h, w = image.shape[:2]
# image = transform({'image': image})['image']
# image = torch.from_numpy(image).unsqueeze(0).to("cuda")
# with torch.no_grad():
# depth = depth_anything(image)
# depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
# depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
# depth = depth.cpu().numpy().astype(np.uint8)
# depth_image = Image.fromarray(depth)
# return depth_image
self.controlnet_map = {
"pose": controlnet_pose,
# "canny": controlnet_canny,
# "depth": controlnet_depth,
}
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval()
self.controlnet_map_fn = {
"pose": openpose,
# "canny": get_canny_image,
# "depth": get_depth_map,
}
self.app = FaceAnalysis(name="buffalo_l", root="./", providers=["CPUExecutionProvider"])
self.app.prepare(ctx_id=0, det_size=(640, 640))
def __call__(self, param):
self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
self.pipe.enable_lora()
adapter_strength_ratio = 0.8
identitynet_strength_ratio = 0.8
pose_strength = 0.4
# canny_strength = 0.3
# depth_strength = 0.5
controlnet_selection = ["pose"]
# controlnet_selection = ["pose", "canny", "depth"]
face_image_path = "https://i.ibb.co/SKg69dD/kaifu-resize.png"
pose_image_path = "https://i.ibb.co/ZSrQ8ZJ/pose.jpg"
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
# check if the input is valid
# if face_image_path is None:
# raise gr.Error(
# f"Cannot find any input face image! Please upload the face image"
# )
# check the prompt
# if prompt is None:
prompt = "a person"
negative_prompt=""
# apply the style template
# prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
face_image = load_image(face_image_path)
face_image = resize_img(face_image, max_side=1024)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = self.app.get(face_image_cv2)
print(len(face_info))
print("error si no hay face")
# if len(face_info) == 0:
# raise gr.Error(
# f"Unable to detect a face in the image. Please upload a different photo with a clear face."
# )
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[
-1
] # only use the maximum face
face_emb = face_info["embedding"]
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
img_controlnet = face_image
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = self.app.get(pose_image_cv2)
# get error if no face is detected
# if len(face_info) == 0:
# raise gr.Error(
# f"Cannot find any face in the reference image! Please upload another person image"
# )
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
if len(controlnet_selection) > 0:
controlnet_scales = {
"pose": pose_strength,
# "canny": canny_strength,
# "depth": depth_strength,
}
self.pipe.controlnet = MultiControlNetModel(
[self.controlnet_identitynet]
+ [self.controlnet_map[s] for s in controlnet_selection]
)
control_scales = [float(identitynet_strength_ratio)] + [
controlnet_scales[s] for s in controlnet_selection
]
control_images = [face_kps] + [
self.controlnet_map_fn[s](img_controlnet).resize((width, height))
for s in controlnet_selection
]
else:
self.pipe.controlnet = self.controlnet_identitynet
control_scales = float(identitynet_strength_ratio)
control_images = face_kps
generator = torch.Generator(device=device.type).manual_seed(3)
print("Start inference...")
self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=control_scales,
num_inference_steps=30,
guidance_scale=7.5,
height=height,
width=width,
generator=generator,
).images
print("Inference done!")
return images[0] |