File size: 11,945 Bytes
211dca2
 
 
 
 
 
 
 
 
 
 
 
36e90d6
6222926
 
663c56d
6222926
663c56d
 
 
 
 
 
 
 
6222926
 
 
 
 
36e90d6
663c56d
 
 
aa1e467
36e90d6
 
 
 
c2e3cb4
 
 
211dca2
c2e3cb4
5e13943
 
27fc45c
aa1e467
 
 
 
 
 
 
 
27fc45c
75c898e
 
 
e3e308f
 
 
 
 
 
 
 
 
 
 
 
 
75c898e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edb4ffd
e3e308f
 
 
edb4ffd
 
 
e3e308f
 
 
 
 
 
 
 
 
 
 
211dca2
e3e308f
211dca2
e3e308f
211dca2
e3e308f
211dca2
e3e308f
 
211dca2
e3e308f
 
211dca2
e3e308f
 
211dca2
e3e308f
211dca2
e3e308f
211dca2
e3e308f
211dca2
edb4ffd
 
e3e308f
 
edb4ffd
75c898e
edb4ffd
e3e308f
75c898e
 
edb4ffd
 
e3e308f
 
edb4ffd
8e23177
5af6b6d
75c898e
211dca2
bfe1bcd
0feaae9
 
211dca2
0feaae9
 
edb4ffd
e3e308f
 
edb4ffd
e3e308f
211dca2
cab9284
 
211dca2
0feaae9
 
 
 
 
 
39435fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0feaae9
 
 
 
 
 
 
 
 
211dca2
0feaae9
 
 
 
 
 
 
 
 
 
 
9ab3234
 
0feaae9
 
 
 
 
 
 
 
 
 
 
 
211dca2
 
0feaae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edb4ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0feaae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab3234
 
 
0feaae9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# from typing import List, Any
# import torch
# from diffusers import StableCascadePriorPipeline, StableCascadeDecoderPipeline

# # Configurar el dispositivo para ejecutar el modelo
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# if device.type != 'cuda':
#     raise ValueError("Se requiere ejecutar en GPU")

# # Configurar el tipo de dato mixto basado en la capacidad de la GPU
# dtype = torch.bfloat16 if torch.cuda.get_device_capability(device.index)[0] >= 8 else torch.float16

# start_test
import cv2
import numpy as np

import diffusers
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image

import torch
import torch.nn.functional as F
from torchvision.transforms import Compose

import PIL
from PIL import Image

from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet

from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
from controlnet_aux import OpenposeDetector
from huggingface_hub import hf_hub_download


# end_test

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
    raise ValueError("Se requiere ejecutar en GPU")

dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32

class EndpointHandler():
    def __init__(self, model_dir):
        hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
        hf_hub_download(
            repo_id="InstantX/InstantID",
            filename="ControlNetModel/diffusion_pytorch_model.safetensors",
            local_dir="./checkpoints",
        )
        hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")

        print("Model dir: ", model_dir)
        face_adapter = f"./checkpoints/ip-adapter.bin"
        controlnet_path = f"./checkpoints/ControlNetModel"

        # transform = Compose([
        #     Resize(
        #         width=518,
        #         height=518,
        #         resize_target=False,
        #         keep_aspect_ratio=True,
        #         ensure_multiple_of=14,
        #         resize_method='lower_bound',
        #         image_interpolation_method=cv2.INTER_CUBIC,
        #     ),
        #     NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        #     PrepareForNet(),
        # ])

        self.controlnet_identitynet = ControlNetModel.from_pretrained(
            controlnet_path, torch_dtype=dtype
        )

        pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"

        self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
        pretrained_model_name_or_path,
        controlnet=[self.controlnet_identitynet],
        torch_dtype=dtype,
        safety_checker=None,
        feature_extractor=None,
        ).to(device)


        self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
            self.pipe.scheduler.config
        )

        # load and disable LCM
        self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
        self.pipe.disable_lora()

        self.pipe.cuda()
        self.pipe.load_ip_adapter_instantid(face_adapter)
        self.pipe.image_proj_model.to("cuda")
        self.pipe.unet.to("cuda")


        # controlnet-pose/canny/depth
        controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
        # controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
        # controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"

        controlnet_pose = ControlNetModel.from_pretrained(
            controlnet_pose_model, torch_dtype=dtype
        ).to(device)
        # controlnet_canny = ControlNetModel.from_pretrained(
        #     controlnet_canny_model, torch_dtype=dtype
        # ).to(device)
        # controlnet_depth = ControlNetModel.from_pretrained(
        #     controlnet_depth_model, torch_dtype=dtype
        # ).to(device)

        # def get_canny_image(image, t1=100, t2=200):
        #     image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        #     edges = cv2.Canny(image, t1, t2)
        #     return Image.fromarray(edges, "L")
        
        # def get_depth_map(image):
        
        #     image = np.array(image) / 255.0

        #     h, w = image.shape[:2]

        #     image = transform({'image': image})['image']
        #     image = torch.from_numpy(image).unsqueeze(0).to("cuda")

        #     with torch.no_grad():
        #         depth = depth_anything(image)

        #     depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
        #     depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0

        #     depth = depth.cpu().numpy().astype(np.uint8)

        #     depth_image = Image.fromarray(depth)

        #     return depth_image
        
        self.controlnet_map = {
            "pose": controlnet_pose,
        #     "canny": controlnet_canny,
        #     "depth": controlnet_depth,
        }

        openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
        # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval()


        self.controlnet_map_fn = {
            "pose": openpose,
        #     "canny": get_canny_image,
        #     "depth": get_depth_map,
        }
        
        self.app = FaceAnalysis(name="buffalo_l", root="./", providers=["CPUExecutionProvider"])
        self.app.prepare(ctx_id=0, det_size=(640, 640))
        
    def __call__(self, param):
        self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.enable_lora()
        
        adapter_strength_ratio = 0.8
        identitynet_strength_ratio = 0.8
        pose_strength = 0.4
        # canny_strength = 0.3
        # depth_strength = 0.5
        controlnet_selection = ["pose"]
        # controlnet_selection = ["pose", "canny", "depth"]
        
        face_image_path = "https://i.ibb.co/SKg69dD/kaifu-resize.png"
        pose_image_path = "https://i.ibb.co/ZSrQ8ZJ/pose.jpg"
        
        def convert_from_cv2_to_image(img: np.ndarray) -> Image:
            return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

        def convert_from_image_to_cv2(img: Image) -> np.ndarray:
            return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

        def resize_img(
            input_image,
            max_side=1280,
            min_side=1024,
            size=None,
            pad_to_max_side=False,
            mode=PIL.Image.BILINEAR,
            base_pixel_number=64,
        ):
            w, h = input_image.size
            if size is not None:
                w_resize_new, h_resize_new = size
            else:
                ratio = min_side / min(h, w)
                w, h = round(ratio * w), round(ratio * h)
                ratio = max_side / max(h, w)
                input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
                w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
                h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
            input_image = input_image.resize([w_resize_new, h_resize_new], mode)

            if pad_to_max_side:
                res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
                offset_x = (max_side - w_resize_new) // 2
                offset_y = (max_side - h_resize_new) // 2
                res[
                    offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
                ] = np.array(input_image)
                input_image = Image.fromarray(res)
            return input_image        

        # check if the input is valid
        # if face_image_path is None:
        #     raise gr.Error(
        #         f"Cannot find any input face image! Please upload the face image"
        #     )
        #  check the prompt
        # if prompt is None:
        prompt = "a person"
        negative_prompt=""
        
        # apply the style template
        # prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)

        face_image = load_image(face_image_path)
        face_image = resize_img(face_image, max_side=1024)
        face_image_cv2 = convert_from_image_to_cv2(face_image)
        height, width, _ = face_image_cv2.shape

        # Extract face features
        face_info = self.app.get(face_image_cv2)

                
        print(len(face_info))
        print("error si no hay face")
        # if len(face_info) == 0:
        #     raise gr.Error(
        #         f"Unable to detect a face in the image. Please upload a different photo with a clear face."
        #     )

        face_info = sorted(
            face_info,
            key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
        )[
            -1
        ]  # only use the maximum face
        
        
        face_emb = face_info["embedding"]
        face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
        img_controlnet = face_image
        if pose_image_path is not None:
            pose_image = load_image(pose_image_path)
            pose_image = resize_img(pose_image, max_side=1024)
            img_controlnet = pose_image
            pose_image_cv2 = convert_from_image_to_cv2(pose_image)

            face_info = self.app.get(pose_image_cv2)

            # get error if no face is detected 
            # if len(face_info) == 0:
            #     raise gr.Error(
            #         f"Cannot find any face in the reference image! Please upload another person image"
            #     )

            face_info = face_info[-1]
            face_kps = draw_kps(pose_image, face_info["kps"])

            width, height = face_kps.size

        control_mask = np.zeros([height, width, 3])
        x1, y1, x2, y2 = face_info["bbox"]
        x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
        control_mask[y1:y2, x1:x2] = 255
        control_mask = Image.fromarray(control_mask.astype(np.uint8))

        if len(controlnet_selection) > 0:
            controlnet_scales = {
                "pose": pose_strength,
                # "canny": canny_strength,
                # "depth": depth_strength,
            }
            self.pipe.controlnet = MultiControlNetModel(
                [self.controlnet_identitynet]
                + [self.controlnet_map[s] for s in controlnet_selection]
            )
            control_scales = [float(identitynet_strength_ratio)] + [
                controlnet_scales[s] for s in controlnet_selection
            ]
            control_images = [face_kps] + [
                self.controlnet_map_fn[s](img_controlnet).resize((width, height))
                for s in controlnet_selection
            ]
        else:
            self.pipe.controlnet = self.controlnet_identitynet
            control_scales = float(identitynet_strength_ratio)
            control_images = face_kps

        generator = torch.Generator(device=device.type).manual_seed(3)

        print("Start inference...")

        self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
        images = self.pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image_embeds=face_emb,
            image=control_images,
            control_mask=control_mask,
            controlnet_conditioning_scale=control_scales,
            num_inference_steps=30,
            guidance_scale=7.5,
            height=height,
            width=width,
            generator=generator,
        ).images
        
        print("Inference done!")
        
        return images[0]