InstantID / handler.py
yamildiego's picture
dnow
e686daf
raw
history blame
10.4 kB
import cv2
import torch
import random
import numpy as np
import PIL
from PIL import Image
from typing import Tuple
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from huggingface_hub import hf_hub_download
import sys
root_local = './'
sys.path.insert(0, root_local)
from insightface.app import FaceAnalysis
from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
from controlnet_aux import OpenposeDetector
import torch.nn.functional as F
from torchvision.transforms import Compose
# global variable
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Spring Festival"
class EndpointHandler():
def __init__(self, model_dir):
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
local_dir="./checkpoints",
)
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
# Load face encoder
# self.app = FaceAnalysis(
# name="antelopev2",
# root="./",
# providers=["CPUExecutionProvider"],
# )
self.app = FaceAnalysis(name="antelopev2", providers=["CPUExecutionProvider"])
self.app.prepare(ctx_id=0, det_size=(640, 640))
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
# Path to InstantID models
face_adapter = f"./checkpoints/ip-adapter.bin"
controlnet_path = f"./checkpoints/ControlNetModel"
# Load pipeline face ControlNetModel
self.controlnet_identitynet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=dtype
)
# controlnet-pose
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
controlnet_pose = ControlNetModel.from_pretrained(
controlnet_pose_model, torch_dtype=dtype
).to(device)
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_canny_model, torch_dtype=dtype
).to(device)
def get_canny_image(image, t1=100, t2=200):
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
edges = cv2.Canny(image, t1, t2)
return Image.fromarray(edges, "L")
self.controlnet_map = {
"pose": controlnet_pose,
"canny": controlnet_canny
}
self.controlnet_map_fn = {
"pose": openpose,
"canny": get_canny_image
}
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=[self.controlnet_identitynet],
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
# load and disable LCM
self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
self.pipe.disable_lora()
self.pipe.cuda()
self.pipe.load_ip_adapter_instantid(face_adapter)
self.pipe.image_proj_model.to("cuda")
self.pipe.unet.to("cuda")
def __call__(self, data):
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def apply_style(
style_name: str, positive: str, negative: str = ""
) -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + " " + negative
face_image_path = data.pop("face_image_path", "https://i.ibb.co/GQzm527/examples-musk-resize.jpg")
pose_image_path = data.pop("pose_image_path", "https://i.ibb.co/TRCK4MS/examples-poses-pose2.jpg")
style_name = data.pop("style_name", DEFAULT_STYLE_NAME)
prompt = data.pop("inputs", "a man flying in the sky in Mars")
negative_prompt = data.pop("negative_prompt", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green")
identitynet_strength_ratio = 0.8
adapter_strength_ratio = 0.8
pose_strength = 0.5
canny_strength = 0.3
num_steps = 20
guidance_scale = 5.0
controlnet_selection = ["pose", "canny"]
scheduler = "EulerDiscreteScheduler"
self.pipe.disable_lora()
scheduler_class_name = scheduler.split("-")[0]
add_kwargs = {}
if len(scheduler.split("-")) > 1:
add_kwargs["use_karras_sigmas"] = True
if len(scheduler.split("-")) > 2:
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
scheduler = getattr(diffusers, scheduler_class_name)
self.pipe.scheduler = scheduler.from_config(self.pipe.scheduler.config, **add_kwargs)
# apply the style template
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
face_image = load_image(face_image_path)
face_image = resize_img(face_image, max_side=1024)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = self.app.get(face_image_cv2)
# if len(face_info) == 0:
# raise gr.Error(
# f"Unable to detect a face in the image. Please upload a different photo with a clear face."
# )
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[
-1
] # only use the maximum face
face_emb = face_info["embedding"]
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
img_controlnet = face_image
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = self.app.get(pose_image_cv2)
# if len(face_info) == 0:
# raise gr.Error(
# f"Cannot find any face in the reference image! Please upload another person image"
# )
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
controlnet_scales = {
"pose": pose_strength,
"canny": canny_strength
}
self.pipe.controlnet = MultiControlNetModel(
[self.controlnet_identitynet]
+ [self.controlnet_map[s] for s in controlnet_selection]
)
control_scales = [float(identitynet_strength_ratio)] + [
controlnet_scales[s] for s in controlnet_selection
]
control_images = [face_kps] + [
self.controlnet_map_fn[s](img_controlnet).resize((width, height))
for s in controlnet_selection
]
generator = torch.Generator(device=device).manual_seed(42)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=control_scales,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
).images
return images[0]