File size: 10,434 Bytes
6222926
1864f62
 
6222926
663c56d
1864f62
 
 
 
6222926
1864f62
663c56d
 
 
1864f62
36e90d6
12d0a16
 
 
 
663c56d
7ff8e0e
1864f62
 
71d0dea
1864f62
71d0dea
1864f62
 
211dca2
1864f62
 
c2e3cb4
1864f62
 
5e13943
 
27fc45c
6d693f7
1864f62
 
 
 
 
 
 
6cb86d0
1864f62
874c9b5
d26bf0e
1864f62
d26bf0e
874c9b5
d26bf0e
e686daf
0df24eb
1864f62
0df24eb
1864f62
 
 
 
 
 
2dfba3e
02896a3
 
1864f62
 
edb4ffd
2391a94
e3e308f
edb4ffd
 
 
2391a94
 
 
211dca2
0df24eb
 
 
 
1864f62
edb4ffd
 
1864f62
edb4ffd
75c898e
edb4ffd
 
1864f62
edb4ffd
0df24eb
 
 
 
1864f62
2dfba3e
1864f62
 
 
0df24eb
1864f62
0df24eb
 
 
0092534
0df24eb
 
 
1864f62
0df24eb
 
 
 
 
019d0a4
f5605e2
0feaae9
 
 
 
 
 
6ab5690
 
 
 
 
 
1864f62
6ab5690
 
1864f62
6ab5690
 
 
1864f62
 
 
 
 
 
6ab5690
 
 
1864f62
6ab5690
 
1864f62
 
 
 
6ab5690
 
1864f62
 
 
 
 
 
 
 
 
 
 
 
e181ddf
 
1864f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0feaae9
6ab5690
0feaae9
 
 
 
 
1864f62
0feaae9
 
 
 
 
 
 
 
 
 
1864f62
0feaae9
 
 
1864f62
 
 
 
 
0feaae9
1864f62
0feaae9
1864f62
 
 
 
0feaae9
1864f62
 
0feaae9
1864f62
0feaae9
 
 
 
 
 
1864f62
 
 
 
 
 
 
 
 
 
 
 
411a1fc
 
1864f62
411a1fc
0feaae9
1864f62
0feaae9
1864f62
 
0df24eb
0feaae9
 
 
 
 
b6abed7
0feaae9
1864f62
 
019d0a4
0feaae9
 
1864f62
0feaae9
1864f62
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import cv2
import torch
import random
import numpy as np

import PIL
from PIL import Image
from typing import Tuple

import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel

from huggingface_hub import hf_hub_download

import sys
root_local = './'
sys.path.insert(0, root_local)

from insightface.app import FaceAnalysis

from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps

from controlnet_aux import OpenposeDetector

import torch.nn.functional as F
from torchvision.transforms import Compose

# global variable
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Spring Festival"

class EndpointHandler():
    def __init__(self, model_dir):
        
        hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
        hf_hub_download(
            repo_id="InstantX/InstantID",
            filename="ControlNetModel/diffusion_pytorch_model.safetensors",
            local_dir="./checkpoints",
        )
        hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")

        # Load face encoder
        # self.app = FaceAnalysis(
        #     name="antelopev2",
        #     root="./",
        #     providers=["CPUExecutionProvider"],
        # )
        
        self.app = FaceAnalysis(name="antelopev2", providers=["CPUExecutionProvider"])
        self.app.prepare(ctx_id=0, det_size=(640, 640))

        openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")

        # Path to InstantID models
        face_adapter = f"./checkpoints/ip-adapter.bin"
        controlnet_path = f"./checkpoints/ControlNetModel"

        # Load pipeline face ControlNetModel
        self.controlnet_identitynet = ControlNetModel.from_pretrained(
            controlnet_path, torch_dtype=dtype
        )

        # controlnet-pose
        controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
        controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"

        controlnet_pose = ControlNetModel.from_pretrained(
            controlnet_pose_model, torch_dtype=dtype
        ).to(device)
        controlnet_canny = ControlNetModel.from_pretrained(
            controlnet_canny_model, torch_dtype=dtype
        ).to(device)

        def get_canny_image(image, t1=100, t2=200):
            image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
            edges = cv2.Canny(image, t1, t2)
            return Image.fromarray(edges, "L")
            
        self.controlnet_map = {
            "pose": controlnet_pose,
            "canny": controlnet_canny
        }

        self.controlnet_map_fn = {
            "pose": openpose,
            "canny": get_canny_image
        }

        pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"

        self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
            pretrained_model_name_or_path,
            controlnet=[self.controlnet_identitynet],
            torch_dtype=dtype,
            safety_checker=None,
            feature_extractor=None,
        ).to(device)

        self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
            self.pipe.scheduler.config
        )

        # load and disable LCM
        self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
        self.pipe.disable_lora()

        self.pipe.cuda()
        self.pipe.load_ip_adapter_instantid(face_adapter)
        self.pipe.image_proj_model.to("cuda")
        self.pipe.unet.to("cuda")
        
    def __call__(self, data):

        def convert_from_cv2_to_image(img: np.ndarray) -> Image:
            return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

        def convert_from_image_to_cv2(img: Image) -> np.ndarray:
            return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

        def resize_img(
            input_image,
            max_side=1280,
            min_side=1024,
            size=None,
            pad_to_max_side=False,
            mode=PIL.Image.BILINEAR,
            base_pixel_number=64,
        ):
            w, h = input_image.size
            if size is not None:
                w_resize_new, h_resize_new = size
            else:
                ratio = min_side / min(h, w)
                w, h = round(ratio * w), round(ratio * h)
                ratio = max_side / max(h, w)
                input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
                w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
                h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
            input_image = input_image.resize([w_resize_new, h_resize_new], mode)

            if pad_to_max_side:
                res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
                offset_x = (max_side - w_resize_new) // 2
                offset_y = (max_side - h_resize_new) // 2
                res[
                    offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
                ] = np.array(input_image)
                input_image = Image.fromarray(res)
            return input_image

        def apply_style(
            style_name: str, positive: str, negative: str = ""
        ) -> Tuple[str, str]:
            p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
            return p.replace("{prompt}", positive), n + " " + negative



        face_image_path = data.pop("face_image_path", "https://i.ibb.co/GQzm527/examples-musk-resize.jpg")
        pose_image_path = data.pop("pose_image_path", "https://i.ibb.co/TRCK4MS/examples-poses-pose2.jpg")
        style_name = data.pop("style_name", DEFAULT_STYLE_NAME)
        prompt = data.pop("inputs", "a man flying in the sky in Mars")
        negative_prompt = data.pop("negative_prompt", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green")
        
        identitynet_strength_ratio = 0.8
        adapter_strength_ratio = 0.8
        pose_strength = 0.5
        canny_strength = 0.3
        num_steps = 20
        guidance_scale = 5.0
        controlnet_selection = ["pose", "canny"]
        scheduler = "EulerDiscreteScheduler"

        self.pipe.disable_lora()
        scheduler_class_name = scheduler.split("-")[0]

        add_kwargs = {}
        if len(scheduler.split("-")) > 1:
            add_kwargs["use_karras_sigmas"] = True
        if len(scheduler.split("-")) > 2:
            add_kwargs["algorithm_type"] = "sde-dpmsolver++"
        scheduler = getattr(diffusers, scheduler_class_name)
        self.pipe.scheduler = scheduler.from_config(self.pipe.scheduler.config, **add_kwargs)

        # apply the style template
        prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)

        face_image = load_image(face_image_path)
        face_image = resize_img(face_image, max_side=1024)
        face_image_cv2 = convert_from_image_to_cv2(face_image)
        height, width, _ = face_image_cv2.shape

        # Extract face features
        face_info = self.app.get(face_image_cv2)

        # if len(face_info) == 0:
        #     raise gr.Error(
        #         f"Unable to detect a face in the image. Please upload a different photo with a clear face."
        #     )

        face_info = sorted(
            face_info,
            key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
        )[
            -1
        ]  # only use the maximum face
        face_emb = face_info["embedding"]
        face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
        img_controlnet = face_image
        if pose_image_path is not None:
            pose_image = load_image(pose_image_path)
            pose_image = resize_img(pose_image, max_side=1024)
            img_controlnet = pose_image
            pose_image_cv2 = convert_from_image_to_cv2(pose_image)

            face_info = self.app.get(pose_image_cv2)

            # if len(face_info) == 0:
            #     raise gr.Error(
            #         f"Cannot find any face in the reference image! Please upload another person image"
            #     )

            face_info = face_info[-1]
            face_kps = draw_kps(pose_image, face_info["kps"])

            width, height = face_kps.size

        control_mask = np.zeros([height, width, 3])
        x1, y1, x2, y2 = face_info["bbox"]
        x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
        control_mask[y1:y2, x1:x2] = 255
        control_mask = Image.fromarray(control_mask.astype(np.uint8))

        controlnet_scales = {
            "pose": pose_strength,
            "canny": canny_strength
        }
        self.pipe.controlnet = MultiControlNetModel(
            [self.controlnet_identitynet]
            + [self.controlnet_map[s] for s in controlnet_selection]
        )
        control_scales = [float(identitynet_strength_ratio)] + [
            controlnet_scales[s] for s in controlnet_selection
        ]
        control_images = [face_kps] + [
            self.controlnet_map_fn[s](img_controlnet).resize((width, height))
            for s in controlnet_selection
        ]

        generator = torch.Generator(device=device).manual_seed(42)

        print("Start inference...")
        print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")

        self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
        images = self.pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image_embeds=face_emb,
            image=control_images,
            control_mask=control_mask,
            controlnet_conditioning_scale=control_scales,
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale,
            height=height,
            width=width,
            generator=generator,
        ).images

        return images[0]