File size: 10,434 Bytes
6222926 1864f62 6222926 663c56d 1864f62 6222926 1864f62 663c56d 1864f62 36e90d6 12d0a16 663c56d 7ff8e0e 1864f62 71d0dea 1864f62 71d0dea 1864f62 211dca2 1864f62 c2e3cb4 1864f62 5e13943 27fc45c 6d693f7 1864f62 6cb86d0 1864f62 874c9b5 d26bf0e 1864f62 d26bf0e 874c9b5 d26bf0e e686daf 0df24eb 1864f62 0df24eb 1864f62 2dfba3e 02896a3 1864f62 edb4ffd 2391a94 e3e308f edb4ffd 2391a94 211dca2 0df24eb 1864f62 edb4ffd 1864f62 edb4ffd 75c898e edb4ffd 1864f62 edb4ffd 0df24eb 1864f62 2dfba3e 1864f62 0df24eb 1864f62 0df24eb 0092534 0df24eb 1864f62 0df24eb 019d0a4 f5605e2 0feaae9 6ab5690 1864f62 6ab5690 1864f62 6ab5690 1864f62 6ab5690 1864f62 6ab5690 1864f62 6ab5690 1864f62 e181ddf 1864f62 0feaae9 6ab5690 0feaae9 1864f62 0feaae9 1864f62 0feaae9 1864f62 0feaae9 1864f62 0feaae9 1864f62 0feaae9 1864f62 0feaae9 1864f62 0feaae9 1864f62 411a1fc 1864f62 411a1fc 0feaae9 1864f62 0feaae9 1864f62 0df24eb 0feaae9 b6abed7 0feaae9 1864f62 019d0a4 0feaae9 1864f62 0feaae9 1864f62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import cv2
import torch
import random
import numpy as np
import PIL
from PIL import Image
from typing import Tuple
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from huggingface_hub import hf_hub_download
import sys
root_local = './'
sys.path.insert(0, root_local)
from insightface.app import FaceAnalysis
from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
from controlnet_aux import OpenposeDetector
import torch.nn.functional as F
from torchvision.transforms import Compose
# global variable
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Spring Festival"
class EndpointHandler():
def __init__(self, model_dir):
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
local_dir="./checkpoints",
)
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
# Load face encoder
# self.app = FaceAnalysis(
# name="antelopev2",
# root="./",
# providers=["CPUExecutionProvider"],
# )
self.app = FaceAnalysis(name="antelopev2", providers=["CPUExecutionProvider"])
self.app.prepare(ctx_id=0, det_size=(640, 640))
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
# Path to InstantID models
face_adapter = f"./checkpoints/ip-adapter.bin"
controlnet_path = f"./checkpoints/ControlNetModel"
# Load pipeline face ControlNetModel
self.controlnet_identitynet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=dtype
)
# controlnet-pose
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
controlnet_pose = ControlNetModel.from_pretrained(
controlnet_pose_model, torch_dtype=dtype
).to(device)
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_canny_model, torch_dtype=dtype
).to(device)
def get_canny_image(image, t1=100, t2=200):
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
edges = cv2.Canny(image, t1, t2)
return Image.fromarray(edges, "L")
self.controlnet_map = {
"pose": controlnet_pose,
"canny": controlnet_canny
}
self.controlnet_map_fn = {
"pose": openpose,
"canny": get_canny_image
}
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=[self.controlnet_identitynet],
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
# load and disable LCM
self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
self.pipe.disable_lora()
self.pipe.cuda()
self.pipe.load_ip_adapter_instantid(face_adapter)
self.pipe.image_proj_model.to("cuda")
self.pipe.unet.to("cuda")
def __call__(self, data):
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def apply_style(
style_name: str, positive: str, negative: str = ""
) -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + " " + negative
face_image_path = data.pop("face_image_path", "https://i.ibb.co/GQzm527/examples-musk-resize.jpg")
pose_image_path = data.pop("pose_image_path", "https://i.ibb.co/TRCK4MS/examples-poses-pose2.jpg")
style_name = data.pop("style_name", DEFAULT_STYLE_NAME)
prompt = data.pop("inputs", "a man flying in the sky in Mars")
negative_prompt = data.pop("negative_prompt", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green")
identitynet_strength_ratio = 0.8
adapter_strength_ratio = 0.8
pose_strength = 0.5
canny_strength = 0.3
num_steps = 20
guidance_scale = 5.0
controlnet_selection = ["pose", "canny"]
scheduler = "EulerDiscreteScheduler"
self.pipe.disable_lora()
scheduler_class_name = scheduler.split("-")[0]
add_kwargs = {}
if len(scheduler.split("-")) > 1:
add_kwargs["use_karras_sigmas"] = True
if len(scheduler.split("-")) > 2:
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
scheduler = getattr(diffusers, scheduler_class_name)
self.pipe.scheduler = scheduler.from_config(self.pipe.scheduler.config, **add_kwargs)
# apply the style template
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
face_image = load_image(face_image_path)
face_image = resize_img(face_image, max_side=1024)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = self.app.get(face_image_cv2)
# if len(face_info) == 0:
# raise gr.Error(
# f"Unable to detect a face in the image. Please upload a different photo with a clear face."
# )
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[
-1
] # only use the maximum face
face_emb = face_info["embedding"]
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
img_controlnet = face_image
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = self.app.get(pose_image_cv2)
# if len(face_info) == 0:
# raise gr.Error(
# f"Cannot find any face in the reference image! Please upload another person image"
# )
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
controlnet_scales = {
"pose": pose_strength,
"canny": canny_strength
}
self.pipe.controlnet = MultiControlNetModel(
[self.controlnet_identitynet]
+ [self.controlnet_map[s] for s in controlnet_selection]
)
control_scales = [float(identitynet_strength_ratio)] + [
controlnet_scales[s] for s in controlnet_selection
]
control_images = [face_kps] + [
self.controlnet_map_fn[s](img_controlnet).resize((width, height))
for s in controlnet_selection
]
generator = torch.Generator(device=device).manual_seed(42)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=control_scales,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
).images
return images[0]
|