yamildiego commited on
Commit
0df24eb
·
1 Parent(s): e462e4d

reorder code

Browse files
.insightface/models/1k3d68.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:df5c06b8a0c12e422b2ed8947b8869faa4105387f199c477af038aa01f9a45cc
3
- size 143607619
 
 
 
 
.insightface/models/2d106det.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf
3
- size 5030888
 
 
 
 
.insightface/models/antelopev2.zip DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8e182f14fc6e80b3bfa375b33eb6cff7ee05d8ef7633e738d1c89021dcf0c5c5
3
- size 360662982
 
 
 
 
.insightface/models/antelopev2/1k3d68.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:df5c06b8a0c12e422b2ed8947b8869faa4105387f199c477af038aa01f9a45cc
3
- size 143607619
 
 
 
 
.insightface/models/antelopev2/2d106det.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf
3
- size 5030888
 
 
 
 
.insightface/models/antelopev2/genderage.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb
3
- size 1322532
 
 
 
 
.insightface/models/antelopev2/glintr100.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4ab1d6435d639628a6f3e5008dd4f929edf4c4124b1a7169e1048f9fef534cdf
3
- size 260665334
 
 
 
 
.insightface/models/antelopev2/scrfd_10g_bnkps.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91
3
- size 16923827
 
 
 
 
.insightface/models/genderage.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb
3
- size 1322532
 
 
 
 
.insightface/models/glintr100.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4ab1d6435d639628a6f3e5008dd4f929edf4c4124b1a7169e1048f9fef534cdf
3
- size 260665334
 
 
 
 
.insightface/models/scrfd_10g_bnkps.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91
3
- size 16923827
 
 
 
 
antelopev2/1k3d68.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:df5c06b8a0c12e422b2ed8947b8869faa4105387f199c477af038aa01f9a45cc
3
- size 143607619
 
 
 
 
antelopev2/2d106det.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf
3
- size 5030888
 
 
 
 
antelopev2/genderage.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb
3
- size 1322532
 
 
 
 
antelopev2/glintr100.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4ab1d6435d639628a6f3e5008dd4f929edf4c4124b1a7169e1048f9fef534cdf
3
- size 260665334
 
 
 
 
antelopev2/scrfd_10g_bnkps.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91
3
- size 16923827
 
 
 
 
handler.py CHANGED
@@ -28,10 +28,14 @@ dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
28
 
29
  class EndpointHandler():
30
  def __init__(self, model_dir):
31
- print("Loading model from", model_dir)
32
 
33
- face_adapter = f"/repository/checkpoints/ip-adapter.bin"
34
- controlnet_path = f"/repository/checkpoints/ControlNetModel"
 
 
 
 
 
35
 
36
  # transform = Compose([
37
  # Resize(
@@ -47,39 +51,13 @@ class EndpointHandler():
47
  # PrepareForNet(),
48
  # ])
49
 
 
 
 
50
  self.controlnet_identitynet = ControlNetModel.from_pretrained(
51
  controlnet_path, torch_dtype=dtype
52
  )
53
 
54
- pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
55
-
56
- self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
57
- pretrained_model_name_or_path,
58
- controlnet=[self.controlnet_identitynet],
59
- torch_dtype=dtype,
60
- safety_checker=None,
61
- feature_extractor=None,
62
- ).to(device)
63
-
64
- self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
65
- self.pipe.scheduler.config
66
- )
67
-
68
- # load and disable LCM
69
- self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
70
- self.pipe.disable_lora()
71
-
72
- self.pipe.cuda()
73
- self.pipe.load_ip_adapter_instantid(face_adapter)
74
- self.pipe.image_proj_model.to("cuda")
75
- self.pipe.unet.to("cuda")
76
-
77
- # if we need more parameters
78
- # scheduler_class_name = "EulerDiscreteScheduler"
79
- # add_kwargs = {}
80
- # scheduler = getattr(diffusers, scheduler_class_name)
81
- # self.pipe.scheduler = scheduler.from_config(self.pipe.scheduler.config, **add_kwargs)
82
-
83
  controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
84
  controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
85
  # controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
@@ -90,19 +68,10 @@ class EndpointHandler():
90
  controlnet_canny = ControlNetModel.from_pretrained(
91
  controlnet_canny_model, torch_dtype=dtype
92
  ).to(device)
93
-
94
  # controlnet_depth = ControlNetModel.from_pretrained(
95
  # controlnet_depth_model, torch_dtype=dtype
96
  # ).to(device)
97
 
98
- openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
99
- # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval()
100
-
101
- def get_canny_image(image, t1=100, t2=200):
102
- image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
103
- edges = cv2.Canny(image, t1, t2)
104
- return Image.fromarray(edges, "L")
105
-
106
  # def get_depth_map(image):
107
 
108
  # image = np.array(image) / 255.0
@@ -124,6 +93,11 @@ class EndpointHandler():
124
 
125
  # return depth_image
126
 
 
 
 
 
 
127
  self.controlnet_map = {
128
  "pose": controlnet_pose,
129
  "canny": controlnet_canny,
@@ -135,11 +109,35 @@ class EndpointHandler():
135
  "canny": get_canny_image,
136
  # "depth": get_depth_map,
137
  }
 
 
 
 
 
 
 
 
 
 
138
 
139
- self.app = FaceAnalysis(name="antelopev2", root="/repository/models/antelopev2", providers=["CPUExecutionProvider"])
140
- self.app.prepare(ctx_id=0, det_size=(640, 640))
 
141
 
142
- self.generator = torch.Generator(device=device).manual_seed(42)
 
 
 
 
 
 
 
 
 
 
 
 
 
143
 
144
  identitynet_strength_ratio = 0.8
145
 
@@ -283,6 +281,8 @@ class EndpointHandler():
283
 
284
  print("Start inference...")
285
 
 
 
286
  self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
287
  images = self.pipe(
288
  prompt=prompt,
 
28
 
29
  class EndpointHandler():
30
  def __init__(self, model_dir):
 
31
 
32
+ print("Loading FaceAnalysis", model_dir)
33
+ self.app = FaceAnalysis(name="antelopev2", root="/repository/models/antelopev2", providers=["CPUExecutionProvider"])
34
+ self.app.prepare(ctx_id=0, det_size=(640, 640))
35
+
36
+
37
+ openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
38
+ # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval()
39
 
40
  # transform = Compose([
41
  # Resize(
 
51
  # PrepareForNet(),
52
  # ])
53
 
54
+ face_adapter = f"/repository/checkpoints/ip-adapter.bin"
55
+ controlnet_path = f"/repository/checkpoints/ControlNetModel"
56
+
57
  self.controlnet_identitynet = ControlNetModel.from_pretrained(
58
  controlnet_path, torch_dtype=dtype
59
  )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
62
  controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
63
  # controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
 
68
  controlnet_canny = ControlNetModel.from_pretrained(
69
  controlnet_canny_model, torch_dtype=dtype
70
  ).to(device)
 
71
  # controlnet_depth = ControlNetModel.from_pretrained(
72
  # controlnet_depth_model, torch_dtype=dtype
73
  # ).to(device)
74
 
 
 
 
 
 
 
 
 
75
  # def get_depth_map(image):
76
 
77
  # image = np.array(image) / 255.0
 
93
 
94
  # return depth_image
95
 
96
+ def get_canny_image(image, t1=100, t2=200):
97
+ image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
98
+ edges = cv2.Canny(image, t1, t2)
99
+ return Image.fromarray(edges, "L")
100
+
101
  self.controlnet_map = {
102
  "pose": controlnet_pose,
103
  "canny": controlnet_canny,
 
109
  "canny": get_canny_image,
110
  # "depth": get_depth_map,
111
  }
112
+
113
+ pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
114
+
115
+ self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
116
+ pretrained_model_name_or_path,
117
+ controlnet=[self.controlnet_identitynet],
118
+ torch_dtype=dtype,
119
+ safety_checker=None,
120
+ feature_extractor=None,
121
+ ).to(device)
122
 
123
+ self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
124
+ self.pipe.scheduler.config
125
+ )
126
 
127
+ # load and disable LCM
128
+ self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
129
+ self.pipe.disable_lora()
130
+
131
+ self.pipe.cuda()
132
+ self.pipe.load_ip_adapter_instantid(face_adapter)
133
+ self.pipe.image_proj_model.to("cuda")
134
+ self.pipe.unet.to("cuda")
135
+
136
+ # if we need more parameters
137
+ # scheduler_class_name = "EulerDiscreteScheduler"
138
+ # add_kwargs = {}
139
+ # scheduler = getattr(diffusers, scheduler_class_name)
140
+ # self.pipe.scheduler = scheduler.from_config(self.pipe.scheduler.config, **add_kwargs)
141
 
142
  identitynet_strength_ratio = 0.8
143
 
 
281
 
282
  print("Start inference...")
283
 
284
+ self.generator = torch.Generator(device=device).manual_seed(42)
285
+
286
  self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
287
  images = self.pipe(
288
  prompt=prompt,