# from typing import List, Any | |
# import torch | |
# from diffusers import StableCascadePriorPipeline, StableCascadeDecoderPipeline | |
# # Configurar el dispositivo para ejecutar el modelo | |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# if device.type != 'cuda': | |
# raise ValueError("Se requiere ejecutar en GPU") | |
# # Configurar el tipo de dato mixto basado en la capacidad de la GPU | |
# dtype = torch.bfloat16 if torch.cuda.get_device_capability(device.index)[0] >= 8 else torch.float16 | |
# start_test | |
# import cv2 | |
# import numpy as np | |
# import PIL | |
# from PIL import Image | |
# import diffusers | |
# from diffusers.models import ControlNetModel | |
# from depth_anything.dpt import DepthAnything | |
# from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
# from diffusers.utils import load_image | |
# from insightface.app import FaceAnalysis | |
# import torch | |
# from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps | |
# from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
# from controlnet_aux import OpenposeDetector | |
# from depth_anything.dpt import DepthAnything | |
# import torch.nn.functional as F | |
# from torchvision.transforms import Compose | |
# from huggingface_hub import hf_hub_download | |
# end_test | |
# hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints") | |
# hf_hub_download( | |
# repo_id="InstantX/InstantID", | |
# filename="ControlNetModel/diffusion_pytorch_model.safetensors", | |
# local_dir="./checkpoints", | |
# ) | |
# hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints") | |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# if device.type != 'cuda': | |
# raise ValueError("Se requiere ejecutar en GPU") | |
# dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 | |
class EndpointHandler(): | |
def __init__(self, model_dir): | |
print("Model dir: ", model_dir) | |
pass | |
# face_adapter = f"./checkpoints/ip-adapter.bin" | |
# controlnet_path = f"./checkpoints/ControlNetModel" | |
# transform = Compose([ | |
# Resize( | |
# width=518, | |
# height=518, | |
# resize_target=False, | |
# keep_aspect_ratio=True, | |
# ensure_multiple_of=14, | |
# resize_method='lower_bound', | |
# image_interpolation_method=cv2.INTER_CUBIC, | |
# ), | |
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
# PrepareForNet(), | |
# ]) | |
# self.controlnet_identitynet = ControlNetModel.from_pretrained( | |
# controlnet_path, torch_dtype=dtype | |
# ) | |
# pretrained_model_name_or_path = "wangqixun/YamerMIX_v8" | |
# self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( | |
# pretrained_model_name_or_path, | |
# controlnet=[self.controlnet_identitynet], | |
# torch_dtype=dtype, | |
# safety_checker=None, | |
# feature_extractor=None, | |
# ).to(device) | |
# self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config( | |
# self.pipe.scheduler.config | |
# ) | |
# # load and disable LCM | |
# self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") | |
# self.pipe.disable_lora() | |
# self.pipe.cuda() | |
# self.pipe.load_ip_adapter_instantid(face_adapter) | |
# self.pipe.image_proj_model.to("cuda") | |
# self.pipe.unet.to("cuda") | |
# # controlnet-pose/canny/depth | |
# controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0" | |
# controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0" | |
# controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small" | |
# controlnet_pose = ControlNetModel.from_pretrained( | |
# controlnet_pose_model, torch_dtype=dtype | |
# ).to(device) | |
# controlnet_canny = ControlNetModel.from_pretrained( | |
# controlnet_canny_model, torch_dtype=dtype | |
# ).to(device) | |
# controlnet_depth = ControlNetModel.from_pretrained( | |
# controlnet_depth_model, torch_dtype=dtype | |
# ).to(device) | |
# def get_canny_image(image, t1=100, t2=200): | |
# image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
# edges = cv2.Canny(image, t1, t2) | |
# return Image.fromarray(edges, "L") | |
# def get_depth_map(image): | |
# image = np.array(image) / 255.0 | |
# h, w = image.shape[:2] | |
# image = transform({'image': image})['image'] | |
# image = torch.from_numpy(image).unsqueeze(0).to("cuda") | |
# with torch.no_grad(): | |
# depth = depth_anything(image) | |
# depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] | |
# depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
# depth = depth.cpu().numpy().astype(np.uint8) | |
# depth_image = Image.fromarray(depth) | |
# return depth_image | |
# self.controlnet_map = { | |
# "pose": controlnet_pose, | |
# "canny": get_canny_image, | |
# "depth": controlnet_depth, | |
# } | |
# openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") | |
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval() | |
# self.controlnet_map_fn = { | |
# "pose": openpose, | |
# "canny": get_canny_image, | |
# "depth": get_depth_map, | |
# } | |
# self.app = FaceAnalysis( | |
# name="antelopev2", | |
# root="./", | |
# providers=["CPUExecutionProvider"], | |
# ) | |
# self.app.prepare(ctx_id=0, det_size=(640, 640)) | |
def __call__(self): | |
return None | |
# self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config) | |
# self.pipe.enable_lora() | |
# adapter_strength_ratio = 0.8 | |
# identitynet_strength_ratio = 0.8 | |
# pose_strength = 0.4 | |
# canny_strength = 0.3 | |
# depth_strength = 0.5 | |
# controlnet_selection = ["pose", "canny", "depth"] | |
# face_image_path = "./kaifu_resize.png" | |
# pose_image_path = "./pose.jpg" | |
# def convert_from_cv2_to_image(img: np.ndarray) -> Image: | |
# return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
# def convert_from_image_to_cv2(img: Image) -> np.ndarray: | |
# return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
# # check if the input is valid | |
# # if face_image_path is None: | |
# # raise gr.Error( | |
# # f"Cannot find any input face image! Please upload the face image" | |
# # ) | |
# # check the prompt | |
# # if prompt is None: | |
# prompt = "a person" | |
# negative_prompt="" | |
# # apply the style template | |
# # prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
# face_image = load_image(face_image_path) | |
# face_image = resize_img(face_image, max_side=1024) | |
# face_image_cv2 = convert_from_image_to_cv2(face_image) | |
# height, width, _ = face_image_cv2.shape | |
# # Extract face features | |
# face_info = self.app.get(face_image_cv2) | |
# print("error si no hay face") | |
# # if len(face_info) == 0: | |
# # raise gr.Error( | |
# # f"Unable to detect a face in the image. Please upload a different photo with a clear face." | |
# # ) | |
# face_info = sorted( | |
# face_info, | |
# key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1], | |
# )[ | |
# -1 | |
# ] # only use the maximum face | |
# def resize_img( | |
# input_image, | |
# max_side=1280, | |
# min_side=1024, | |
# size=None, | |
# pad_to_max_side=False, | |
# mode=PIL.Image.BILINEAR, | |
# base_pixel_number=64, | |
# ): | |
# w, h = input_image.size | |
# if size is not None: | |
# w_resize_new, h_resize_new = size | |
# else: | |
# ratio = min_side / min(h, w) | |
# w, h = round(ratio * w), round(ratio * h) | |
# ratio = max_side / max(h, w) | |
# input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) | |
# w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
# h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
# input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
# if pad_to_max_side: | |
# res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
# offset_x = (max_side - w_resize_new) // 2 | |
# offset_y = (max_side - h_resize_new) // 2 | |
# res[ | |
# offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new | |
# ] = np.array(input_image) | |
# input_image = Image.fromarray(res) | |
# return input_image | |
# face_emb = face_info["embedding"] | |
# face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"]) | |
# img_controlnet = face_image | |
# if pose_image_path is not None: | |
# pose_image = load_image(pose_image_path) | |
# pose_image = resize_img(pose_image, max_side=1024) | |
# img_controlnet = pose_image | |
# pose_image_cv2 = convert_from_image_to_cv2(pose_image) | |
# face_info = self.app.get(pose_image_cv2) | |
# # get error if no face is detected | |
# # if len(face_info) == 0: | |
# # raise gr.Error( | |
# # f"Cannot find any face in the reference image! Please upload another person image" | |
# # ) | |
# face_info = face_info[-1] | |
# face_kps = draw_kps(pose_image, face_info["kps"]) | |
# width, height = face_kps.size | |
# control_mask = np.zeros([height, width, 3]) | |
# x1, y1, x2, y2 = face_info["bbox"] | |
# x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
# control_mask[y1:y2, x1:x2] = 255 | |
# control_mask = Image.fromarray(control_mask.astype(np.uint8)) | |
# if len(controlnet_selection) > 0: | |
# controlnet_scales = { | |
# "pose": pose_strength, | |
# "canny": canny_strength, | |
# "depth": depth_strength, | |
# } | |
# self.pipe.controlnet = MultiControlNetModel( | |
# [self.controlnet_identitynet] | |
# + [self.controlnet_map[s] for s in controlnet_selection] | |
# ) | |
# control_scales = [float(identitynet_strength_ratio)] + [ | |
# controlnet_scales[s] for s in controlnet_selection | |
# ] | |
# control_images = [face_kps] + [ | |
# self.controlnet_map_fn[s](img_controlnet).resize((width, height)) | |
# for s in controlnet_selection | |
# ] | |
# else: | |
# self.pipe.controlnet = self.controlnet_identitynet | |
# control_scales = float(identitynet_strength_ratio) | |
# control_images = face_kps | |
# generator = torch.Generator(device=device.type).manual_seed(3) | |
# print("Start inference...") | |
# self.pipe.set_ip_adapter_scale(adapter_strength_ratio) | |
# images = self.pipe( | |
# prompt=prompt, | |
# negative_prompt=negative_prompt, | |
# image_embeds=face_emb, | |
# image=control_images, | |
# control_mask=control_mask, | |
# controlnet_conditioning_scale=control_scales, | |
# num_inference_steps=30, | |
# guidance_scale=7.5, | |
# height=height, | |
# width=width, | |
# generator=generator, | |
# ).images | |
# return images[0] |