File size: 12,214 Bytes
211dca2
 
 
 
 
 
 
 
 
 
 
 
36e90d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211dca2
7c9a232
 
 
 
 
 
 
5e13943
7c9a232
 
 
5e13943
7c9a232
5e13943
 
27fc45c
 
7c9a232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211dca2
7c9a232
211dca2
7c9a232
211dca2
7c9a232
211dca2
7c9a232
 
211dca2
7c9a232
 
211dca2
7c9a232
 
211dca2
7c9a232
211dca2
7c9a232
211dca2
7c9a232
211dca2
7c9a232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211dca2
 
7c9a232
 
 
211dca2
7c9a232
 
 
 
 
 
211dca2
7c9a232
 
211dca2
7c9a232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211dca2
7c9a232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211dca2
 
7c9a232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211dca2
7c9a232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# from typing import List, Any
# import torch
# from diffusers import StableCascadePriorPipeline, StableCascadeDecoderPipeline

# # Configurar el dispositivo para ejecutar el modelo
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# if device.type != 'cuda':
#     raise ValueError("Se requiere ejecutar en GPU")

# # Configurar el tipo de dato mixto basado en la capacidad de la GPU
# dtype = torch.bfloat16 if torch.cuda.get_device_capability(device.index)[0] >= 8 else torch.float16

# start_test
# import cv2
# import numpy as np
# import PIL
# from PIL import Image
# import diffusers
# from diffusers.models import ControlNetModel
# from depth_anything.dpt import DepthAnything
# from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
# from diffusers.utils import load_image
# from insightface.app import FaceAnalysis

# import torch
# from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
# from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel

# from controlnet_aux import OpenposeDetector
# from depth_anything.dpt import DepthAnything

# import torch.nn.functional as F
# from torchvision.transforms import Compose

# from huggingface_hub import hf_hub_download
# end_test


# hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
# hf_hub_download(
#     repo_id="InstantX/InstantID",
#     filename="ControlNetModel/diffusion_pytorch_model.safetensors",
#     local_dir="./checkpoints",
# )
# hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")

# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# if device.type != 'cuda':
#     raise ValueError("Se requiere ejecutar en GPU")

# dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32

class EndpointHandler():
    def __init__(self, model_dir):
        print("Model dir: ", model_dir)
        pass
        # face_adapter = f"./checkpoints/ip-adapter.bin"
        # controlnet_path = f"./checkpoints/ControlNetModel"

        # transform = Compose([
        #     Resize(
        #         width=518,
        #         height=518,
        #         resize_target=False,
        #         keep_aspect_ratio=True,
        #         ensure_multiple_of=14,
        #         resize_method='lower_bound',
        #         image_interpolation_method=cv2.INTER_CUBIC,
        #     ),
        #     NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        #     PrepareForNet(),
        # ])

        # self.controlnet_identitynet = ControlNetModel.from_pretrained(
        #     controlnet_path, torch_dtype=dtype
        # )

        # pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"

        # self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
        # pretrained_model_name_or_path,
        # controlnet=[self.controlnet_identitynet],
        # torch_dtype=dtype,
        # safety_checker=None,
        # feature_extractor=None,
        # ).to(device)


        # self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
        #     self.pipe.scheduler.config
        # )

        # # load and disable LCM
        # self.pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
        # self.pipe.disable_lora()

        # self.pipe.cuda()
        # self.pipe.load_ip_adapter_instantid(face_adapter)
        # self.pipe.image_proj_model.to("cuda")
        # self.pipe.unet.to("cuda")


        # # controlnet-pose/canny/depth
        # controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
        # controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
        # controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"

        # controlnet_pose = ControlNetModel.from_pretrained(
        #     controlnet_pose_model, torch_dtype=dtype
        # ).to(device)
        # controlnet_canny = ControlNetModel.from_pretrained(
        #     controlnet_canny_model, torch_dtype=dtype
        # ).to(device)
        # controlnet_depth = ControlNetModel.from_pretrained(
        #     controlnet_depth_model, torch_dtype=dtype
        # ).to(device)

        # def get_canny_image(image, t1=100, t2=200):
        #     image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        #     edges = cv2.Canny(image, t1, t2)
        #     return Image.fromarray(edges, "L")
        
        # def get_depth_map(image):
        
        #     image = np.array(image) / 255.0

        #     h, w = image.shape[:2]

        #     image = transform({'image': image})['image']
        #     image = torch.from_numpy(image).unsqueeze(0).to("cuda")

        #     with torch.no_grad():
        #         depth = depth_anything(image)

        #     depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
        #     depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0

        #     depth = depth.cpu().numpy().astype(np.uint8)

        #     depth_image = Image.fromarray(depth)

        #     return depth_image
        
        # self.controlnet_map = {
        #     "pose": controlnet_pose,
        #     "canny": get_canny_image,
        #     "depth": controlnet_depth,
        # }

        # openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
        # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval()


        # self.controlnet_map_fn = {
        #     "pose": openpose,
        #     "canny": get_canny_image,
        #     "depth": get_depth_map,
        # }

        # self.app = FaceAnalysis(
        #     name="antelopev2",
        #     root="./",
        #     providers=["CPUExecutionProvider"],
        # )
        # self.app.prepare(ctx_id=0, det_size=(640, 640))
        
    def __call__(self):
        return None
        # self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
        # self.pipe.enable_lora()
        
        # adapter_strength_ratio = 0.8
        # identitynet_strength_ratio = 0.8
        # pose_strength = 0.4
        # canny_strength = 0.3
        # depth_strength = 0.5
        # controlnet_selection = ["pose", "canny", "depth"]
        
        # face_image_path = "./kaifu_resize.png"
        # pose_image_path = "./pose.jpg"
        
        # def convert_from_cv2_to_image(img: np.ndarray) -> Image:
        #     return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

        # def convert_from_image_to_cv2(img: Image) -> np.ndarray:
        #     return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

        # # check if the input is valid
        # # if face_image_path is None:
        # #     raise gr.Error(
        # #         f"Cannot find any input face image! Please upload the face image"
        # #     )
        # #  check the prompt
        # # if prompt is None:
        # prompt = "a person"
        # negative_prompt=""
        
        # # apply the style template
        # # prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)

        # face_image = load_image(face_image_path)
        # face_image = resize_img(face_image, max_side=1024)
        # face_image_cv2 = convert_from_image_to_cv2(face_image)
        # height, width, _ = face_image_cv2.shape

        # # Extract face features
        # face_info = self.app.get(face_image_cv2)

        # print("error si no hay face")
        # # if len(face_info) == 0:
        # #     raise gr.Error(
        # #         f"Unable to detect a face in the image. Please upload a different photo with a clear face."
        # #     )

        # face_info = sorted(
        #     face_info,
        #     key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
        # )[
        #     -1
        # ]  # only use the maximum face
        
        
        # def resize_img(
        #     input_image,
        #     max_side=1280,
        #     min_side=1024,
        #     size=None,
        #     pad_to_max_side=False,
        #     mode=PIL.Image.BILINEAR,
        #     base_pixel_number=64,
        # ):
        #     w, h = input_image.size
        #     if size is not None:
        #         w_resize_new, h_resize_new = size
        #     else:
        #         ratio = min_side / min(h, w)
        #         w, h = round(ratio * w), round(ratio * h)
        #         ratio = max_side / max(h, w)
        #         input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
        #         w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
        #         h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
        #     input_image = input_image.resize([w_resize_new, h_resize_new], mode)

        #     if pad_to_max_side:
        #         res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
        #         offset_x = (max_side - w_resize_new) // 2
        #         offset_y = (max_side - h_resize_new) // 2
        #         res[
        #             offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
        #         ] = np.array(input_image)
        #         input_image = Image.fromarray(res)
        #     return input_image        
        
        # face_emb = face_info["embedding"]
        # face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
        # img_controlnet = face_image
        # if pose_image_path is not None:
        #     pose_image = load_image(pose_image_path)
        #     pose_image = resize_img(pose_image, max_side=1024)
        #     img_controlnet = pose_image
        #     pose_image_cv2 = convert_from_image_to_cv2(pose_image)

        #     face_info = self.app.get(pose_image_cv2)

        #     # get error if no face is detected 
        #     # if len(face_info) == 0:
        #     #     raise gr.Error(
        #     #         f"Cannot find any face in the reference image! Please upload another person image"
        #     #     )

        #     face_info = face_info[-1]
        #     face_kps = draw_kps(pose_image, face_info["kps"])

        #     width, height = face_kps.size

        # control_mask = np.zeros([height, width, 3])
        # x1, y1, x2, y2 = face_info["bbox"]
        # x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
        # control_mask[y1:y2, x1:x2] = 255
        # control_mask = Image.fromarray(control_mask.astype(np.uint8))

        # if len(controlnet_selection) > 0:
        #     controlnet_scales = {
        #         "pose": pose_strength,
        #         "canny": canny_strength,
        #         "depth": depth_strength,
        #     }
        #     self.pipe.controlnet = MultiControlNetModel(
        #         [self.controlnet_identitynet]
        #         + [self.controlnet_map[s] for s in controlnet_selection]
        #     )
        #     control_scales = [float(identitynet_strength_ratio)] + [
        #         controlnet_scales[s] for s in controlnet_selection
        #     ]
        #     control_images = [face_kps] + [
        #         self.controlnet_map_fn[s](img_controlnet).resize((width, height))
        #         for s in controlnet_selection
        #     ]
        # else:
        #     self.pipe.controlnet = self.controlnet_identitynet
        #     control_scales = float(identitynet_strength_ratio)
        #     control_images = face_kps

        # generator = torch.Generator(device=device.type).manual_seed(3)

        # print("Start inference...")

        # self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
        # images = self.pipe(
        #     prompt=prompt,
        #     negative_prompt=negative_prompt,
        #     image_embeds=face_emb,
        #     image=control_images,
        #     control_mask=control_mask,
        #     controlnet_conditioning_scale=control_scales,
        #     num_inference_steps=30,
        #     guidance_scale=7.5,
        #     height=height,
        #     width=width,
        #     generator=generator,
        # ).images

        # return images[0]