|
--- |
|
language_details: "quy_Latn, spa_Latn" |
|
pipeline_tag: translation |
|
tags: |
|
- nllb |
|
license: "cc-by-nc-4.0" |
|
inference: false |
|
--- |
|
|
|
# Description |
|
Finetuned [facebook/nllb-200-3.3B](https://huggingface.co./facebook/nllb-200-3.3B) model to translate between Spanish ("spa_Latn") and Mapuzungun ("quy_Latn"). |
|
|
|
# Example |
|
```python |
|
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = NllbTokenizer.from_pretrained("CenIA/nllb-200-3.3B-spa-arn", use_auth_token="HF_TOKEN") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("CenIA/nllb-200-3.3B-spa-arn", use_auth_token="HF_TOKEN") |
|
|
|
def translate(sentence: str, translate_from="spa_Latn", translate_to="quy_Latn") -> str: |
|
tokenizer.src_lang = translate_from |
|
tokenizer.tgt_lang = translate_to |
|
|
|
inputs = tokenizer(sentence, return_tensors="pt") |
|
result = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[translate_to]) |
|
decoded = tokenizer.batch_decode(result, skip_special_tokens=True)[0] |
|
|
|
return decoded |
|
|
|
traduction = translate("Hola, ¿cómo estás?") |
|
|
|
print(traduction) |
|
``` |