|
--- |
|
license: other |
|
license_name: exaone |
|
license_link: https://huggingface.co./LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/blob/main/LICENSE |
|
--- |
|
[LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) |
|
|
|
์์
ํด์ฃผ์ maywell/EXAONE-3.0-7.8B-Instruct-Llamafied์ ์ฐธ๊ณ ํด์ ๋ณ๊ฒฝํ์ต๋๋ค. |
|
GPU ์์์ด ์์ผ์๋ฉด ์ฌ์ฉํ์๋ฉด ๋ฉ๋๋ค. |
|
|
|
์ฌ๋ผ๊ฐ ๋ชจ๋ธ์ 8K ์ปจํ
์คํธ๊น์ง ์ง์ํ๋๋ก ์ค์ ์ ๋ณ๊ฒฝํ์์ต๋๋ค. (์ฑ๋ฅ ๋ฏธํ์ธ) |
|
|
|
```python |
|
import torch |
|
import gc |
|
|
|
from transformers import LlamaConfig, LlamaForCausalLM, AutoModelForCausalLM, AutoTokenizer |
|
from tqdm import tqdm |
|
|
|
def unload_model(model): |
|
del model |
|
gc.collect() |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
def create_llama_config(exaone_config): |
|
return LlamaConfig( |
|
vocab_size=exaone_config.vocab_size, |
|
hidden_size=exaone_config.hidden_size, |
|
intermediate_size=exaone_config.intermediate_size, |
|
num_hidden_layers=exaone_config.num_layers, |
|
num_attention_heads=exaone_config.num_attention_heads, |
|
max_position_embeddings=exaone_config.max_position_embeddings, |
|
rms_norm_eps=exaone_config.layer_norm_epsilon, |
|
num_key_value_heads=exaone_config.num_key_value_heads, |
|
rope_theta=exaone_config.rope_theta, |
|
bos_token_id=exaone_config.bos_token_id, |
|
eos_token_id=exaone_config.eos_token_id, |
|
pad_token_id=exaone_config.pad_token_id, |
|
attention_bias=False, |
|
) |
|
|
|
def copy_embedding_weights(llama_model, exaone_model): |
|
llama_model.model.embed_tokens.weight.data = exaone_model.transformer.wte.weight.data.to(torch.float16) |
|
|
|
def copy_layer_weights(llama_layer, exaone_layer): |
|
# Self-attention |
|
llama_layer.self_attn.q_proj.weight.data = exaone_layer.attn.attention.q_proj.weight.data.to(torch.float16) |
|
llama_layer.self_attn.k_proj.weight.data = exaone_layer.attn.attention.k_proj.weight.data.to(torch.float16) |
|
llama_layer.self_attn.v_proj.weight.data = exaone_layer.attn.attention.v_proj.weight.data.to(torch.float16) |
|
llama_layer.self_attn.o_proj.weight.data = exaone_layer.attn.attention.out_proj.weight.data.to(torch.float16) |
|
# MLP |
|
llama_layer.mlp.gate_proj.weight.data = exaone_layer.mlp.c_fc_0.weight.data.to(torch.float16) |
|
llama_layer.mlp.up_proj.weight.data = exaone_layer.mlp.c_fc_1.weight.data.to(torch.float16) |
|
llama_layer.mlp.down_proj.weight.data = exaone_layer.mlp.c_proj.weight.data.to(torch.float16) |
|
# Layer Norms |
|
llama_layer.input_layernorm.weight.data = exaone_layer.ln_1.weight.data.to(torch.float16) |
|
llama_layer.post_attention_layernorm.weight.data = exaone_layer.ln_2.weight.data.to(torch.float16) |
|
|
|
def copy_final_weights(llama_model, exaone_model): |
|
llama_model.model.norm.weight.data = exaone_model.transformer.ln_f.weight.data.to(torch.float16) |
|
llama_model.lm_head.weight.data = exaone_model.lm_head.weight.data.to(torch.float16) |
|
|
|
def port_exaone_to_llama(exaone_model_path, llama_model_path): |
|
print("Loading EXAONE model and tokenizer...") |
|
exaone_model = AutoModelForCausalLM.from_pretrained(exaone_model_path, torch_dtype=torch.float16, device_map="cpu", trust_remote_code=True) |
|
exaone_tokenizer = AutoTokenizer.from_pretrained(exaone_model_path, trust_remote_code=True) |
|
exaone_config = exaone_model.config |
|
|
|
print("Creating Llama configuration...") |
|
llama_config = create_llama_config(exaone_config) |
|
|
|
print("Initializing Llama model...") |
|
llama_model = LlamaForCausalLM(llama_config) |
|
llama_model.to(torch.float16) |
|
llama_model.to('cpu') |
|
|
|
print("Copying weights...") |
|
with torch.no_grad(): |
|
copy_embedding_weights(llama_model, exaone_model) |
|
|
|
for i in tqdm(range(exaone_config.num_layers), desc="Copying layers"): |
|
copy_layer_weights(llama_model.model.layers[i], exaone_model.transformer.h[i]) |
|
if i % 10 == 0: # Garbage collection every 10 layers |
|
gc.collect() |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
copy_final_weights(llama_model, exaone_model) |
|
|
|
print("Unloading EXAONE model to free memory...") |
|
unload_model(exaone_model) |
|
|
|
print(f"Saving ported Llama model and tokenizer to {llama_model_path}") |
|
llama_model.save_pretrained(llama_model_path, safe_serialization=True, max_shard_size="1GB") |
|
exaone_tokenizer.save_pretrained(llama_model_path) |
|
|
|
print("Unloading Llama model...") |
|
unload_model(llama_model) |
|
|
|
print(f"EXAONE model successfully ported to Llama format and saved at {llama_model_path}") |
|
|
|
if __name__ == "__main__": |
|
exaone_model_path = "LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct" |
|
llama_model_path = "./exa_llamafied" |
|
port_exaone_to_llama(exaone_model_path, llama_model_path) |
|
``` |
|
|
|
|
|
๋ชจ๋ธ์ ๊ณต๊ฐํด์ฃผ์ LG AI Research๋ถ๋ค๊ป ๊ฐ์ฌ์ ๋ง์ ๋๋ฆฝ๋๋ค. |