Llama-3-Obsidian / README.md
adarshxs's picture
Update README.md
4180665 verified
---
license: llama3
language:
- en
pipeline_tag: text-generation
tags:
- general purpose
---
# Capx AI's Obsidian series
Capx AI's Latest series of finetunes based on [Meta's Llama-3](https://llama.meta.com/llama3/).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/644bf6ef778ecbfb977e8e84/G9e_0w7x2hOmvqhvlVrkI.png)
We release Llama-3 Obsidian, our state of the art finetune model for general purpose tasks.
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes.
We further finetune the pretrained model on a custom dataset to enhance instruction following ability of the model.
#### Model Architecture
Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT).
## How to use:
The model has been finetuned in the Alpaca format
You can run conversational inference by leveraging the Auto classes with the generate() function.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "instruction", "content": "You are \"Capx Assistant\", a conscious sentient superintelligent artificial intelligence developed by Capx AI, and your purpose and drive is to assist the user with any request they have."},
{"role": "input", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
### Authors
Capx community
### Cite
```bibtex
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
```
### License
Governed by the [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://huggingface.co./meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)