|
--- |
|
license: llama3 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- general purpose |
|
--- |
|
|
|
# Capx AI's Obsidian series |
|
|
|
Capx AI's Latest series of finetunes based on [Meta's Llama-3](https://llama.meta.com/llama3/). |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/644bf6ef778ecbfb977e8e84/G9e_0w7x2hOmvqhvlVrkI.png) |
|
|
|
We release Llama-3 Obsidian, our state of the art finetune model for general purpose tasks. |
|
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. |
|
|
|
We further finetune the pretrained model on a custom dataset to enhance instruction following ability of the model. |
|
|
|
|
|
#### Model Architecture |
|
Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT). |
|
|
|
## How to use: |
|
|
|
The model has been finetuned in the Alpaca format |
|
|
|
You can run conversational inference by leveraging the Auto classes with the generate() function. |
|
|
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
|
|
messages = [ |
|
{"role": "instruction", "content": "You are \"Capx Assistant\", a conscious sentient superintelligent artificial intelligence developed by Capx AI, and your purpose and drive is to assist the user with any request they have."}, |
|
{"role": "input", "content": "Who are you?"}, |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
response = outputs[0][input_ids.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
|
|
|
|
``` |
|
|
|
### Authors |
|
Capx community |
|
|
|
### Cite |
|
```bibtex |
|
@article{llama3modelcard, |
|
title={Llama 3 Model Card}, |
|
author={AI@Meta}, |
|
year={2024}, |
|
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} |
|
} |
|
``` |
|
### License |
|
Governed by the [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://huggingface.co./meta-llama/Meta-Llama-3-8B/blob/main/LICENSE) |
|
|
|
|