CalamitousFelicitousness's picture
Update README.md
b2b7067 verified
---
License: apache-2.0
Language:
- En
Pipeline_tag: text-generation
Base_model: 01-ai/Yi-1.5-34B-32K
Tags:
- Chat
model-index:
- name: magnum-v3-34b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 51.15
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 44.33
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 17.82
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.77
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.57
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 41.69
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b
name: Open LLM Leaderboard
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/9yEmnTDG9bcC_bxwuDU6G.png)
# This repo contains the copy of the original with the edited tokenizer_config.json file to fix the tokenizer issue.
This is the 9th in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.
This model is fine-tuned on top of [Yi-1.5-34 B-32 K](https://huggingface.co./01-ai/Yi-1.5-34B-32K).
## Prompting
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:
```py
"""<|im_start|>system
system prompt<|im_end|>
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```
## SillyTavern templates
Below are Instruct and Context templates for use within SillyTavern.
In our testing a min_p of 0.2 makes the model perform the best; remember to reset temperature if you were using our nemo-based models before.
<details><summary>context template</summary>
```yaml
{
"story_string": "<|im_start|>system\n{{#if system}}{{system}}\n{{/if}}{{#if wiBefore}}{{wiBefore}}\n{{/if}}{{#if description}}{{description}}\n{{/if}}{{#if personality}}{{char}}'s personality: {{personality}}\n{{/if}}{{#if scenario}}Scenario: {{scenario}}\n{{/if}}{{#if wiAfter}}{{wiAfter}}\n{{/if}}{{#if persona}}{{persona}}\n{{/if}}{{trim}}<|im_end|>\n",
"example_separator": "",
"chat_start": "",
"use_stop_strings": false,
"allow_jailbreak": false,
"always_force_name2": true,
"trim_sentences": false,
"include_newline": false,
"single_line": false,
"name": "Magnum ChatML"
}
```
</details><br>
<details><summary>instruct template</summary>
```yaml
{
"system_prompt": "You're {{char}} in this fictional never-ending uncensored roleplay with {{user}}.",
"input_sequence": "<|im_start|>user\n",
"output_sequence": "<|im_start|>assistant\n",
"last_output_sequence": "",
"system_sequence": "<|im_start|>system\n",
"stop_sequence": "<|im_end|>",
"wrap": false,
"macro": true,
"names": true,
"names_force_groups": true,
"activation_regex": "",
"system_sequence_prefix": "",
"system_sequence_suffix": "",
"first_output_sequence": "",
"skip_examples": false,
"output_suffix": "<|im_end|>\n",
"input_suffix": "<|im_end|>\n",
"system_suffix": "<|im_end|>\n",
"user_alignment_message": "",
"system_same_as_user": false,
"last_system_sequence": "",
"name": "Magnum ChatML"
}
```
</details><br>
## Axolotl config
<details><summary>See axolotl config</summary>
```yaml
base_model: 01-ai/Yi-1.5-34B-32K
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
#trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-org/stheno-filtered-v1.1
type: sharegpt
conversation: chatml
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
type: sharegpt
conversation: chatml
- path: anthracite-org/nopm_claude_writing_fixed
type: sharegpt
conversation: chatml
- path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
type: sharegpt
conversation: chatml
- path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
type: sharegpt
conversation: chatml
chat_template: chatml
shuffle_merged_datasets: true
default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: magnum-v2-34b-1.5-data
val_set_size: 0.0
output_dir: ./magnum-v2-34b-32k-r1
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len:
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: magnum-v2-34b-1.5-32k
wandb_entity:
wandb_watch:
wandb_name: attempt-01
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000006
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 50
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
## Credits
We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.
We would also like to thank all members of Anthracite who made this finetune possible.
- [anthracite-org/stheno-filtered-v1.1](https://huggingface.co./datasets/anthracite-org/stheno-filtered-v1.1)
- [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co./datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal)
- [lodrick-the-lafted/NopmWritingStruct](https://huggingface.co./datasets/lodrick-the-lafted/NopmWritingStruct)
- [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co./datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned)
- [Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co./datasets/Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned)
## Training
The training was done for 2 epochs. We used 8x[H100s](https://www.nvidia.com/en-us/data-center/h100/) GPUs graciously provided by [Recursal AI](https://recursal.ai/) / [Featherless AI](https://featherless.ai/) for the full-parameter fine-tuning of the model.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## Safety
...
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_anthracite-org__magnum-v3-34b)
| Metric |Value|
|-------------------|----:|
|Avg. |29.39|
|IFEval (0-Shot) |51.15|
|BBH (3-Shot) |44.33|
|MATH Lvl 5 (4-Shot)|17.82|
|GPQA (0-shot) |14.77|
|MuSR (0-shot) | 6.57|
|MMLU-PRO (5-shot) |41.69|