CWhy commited on
Commit
83c95c8
·
1 Parent(s): ab8021c

run with id LunarLander-v2-20220505-224825

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -11.88 +/- 22.18
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 286.78 +/- 27.33
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbc1567820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbc15678b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbc1567940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbc15679d0>", "_build": "<function ActorCriticPolicy._build at 0x7fdbc1567a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fdbc1567af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbc1567b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdbc1567c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbc1567ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbc1567d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbc1567dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdbc1562780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZQoS0BLIGV1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 64, {"pi": [64, 32], "vf": [64, 32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 327680, "_total_timesteps": 320000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651737880.4975297, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADOU+TwfF/86Dg2SPnf/lL4ao0M8HdAfPgAAAAAAAAAANm1pvt3rcj97mN6+zcIrv+7+qL6rF2++AAAAAAAAAAC2ovg+HXRfPnRXBr1PDh6/z8H4PgYhu7sAAAAAAAAAAPO6mz2PSim6rdbhuzcdr7xAXhu7pVOZvQAAAAAAAIA/wISiPa5X5Dki2JI8PzC1PKuTgzsUfp49AACAPwAAgD8axSS+UgbzPo3u5710W6W+PYDQvMzQNr4AAAAAAAAAAF3ZzT7q/li9QCzpO/DxKb0npJE85xoQvQAAAAAAAAAATco7vQrxCTzdAyo+5Fk9vCkxRr0aZkE+AAAAAAAAAADzuxm+OWqsP6zjor4Amai+PQhPvr+wpb0AAAAAAAAAADNRhby4Gu06wtvjO8lLzbxzbzE8ZYS/PQAAAAAAAAAApvPIPRz7WbzLaG49UjE3vrRdjryrAMC+AACAPwAAgD9mCM8914cvOpXEVDy2LcW8j/IYPA5jrr0AAAAAAACAPxr3Fr1SH/482iwVPjaoub4i34M9wIpNPgAAAAAAAAAAM3MfOmiPjz9b77M8cpQHv0GXu7oIrRw9AAAAAAAAAACztvI9H1ONOlypKD1pTgw9GcrLuPpY67wAAAAAAAAAAFuTDL9Hvhq+NRLrvGE82T1sfII+wkhbvgAAgD8AAIA/gLgGPqQKAbsCqhi8vdPRPGAXnrykX7M9AACAPwAAgD/zDri+EWNJve8dILtrBxM8UYISPiZFMT4AAIA/AAAAAPBX0T7Hjuq92isrP4Su8r1uTwC/rHosPgAAAAAAAAAA81nBPUhDnroqvi691buHvKaACbpmPG29AACAPwAAgD/tLAA+e1DzO2ZcZryHtq+8Yr0PPQjr/DsAAAAAAAAAAJqkqz1IMaI5GeCZvLxA/Lrr7xy8Qx/eOwAAgD8AAAAAmhnJPFL4urmW28g8BMLvOjGaLrtbdNG7AACAPwAAgD8NAMg9cSVuOnOGqjzftiQ8qiDDO+7iDT0AAAAAAAAAAHMjQD+6+QC+hJqePbFFvzyWjPk9+JD7PQAAAAAAAAAA1qrbPuDt2L2lzuw+HGKWvJeTrr0k1L8+AACAPwAAgD+aHbM70RcAPx4jlzrQHiW/yJC3PKoYHL4AAAAAAAAAAJp3ZLzgmK8/QsW4vbDyfb7oR+q8IXe2vQAAAAAAAAAAM6L/PAVZrz+T8d0+kJyZvjyswbxGoAS9AAAAAAAAAABm+3A+e1fgO0rBEL1gOKU8O947PU0bij0AAAAAAAAAANrFnT2ksBE4CiR8vBsPOb0ALSU6P4UjPgAAgD8AAAAAZtniPcO5ErrLEOC6kadltd/LV7rg9QE6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITKd1G9R2McCUhpRSlIwBbJRLV4wBdJRHQGoUp1aGHpN1fZQoaAZoCWgPQwgH6pRHN8L4P5SGlFKUaBVN6ANoFkdAahcfvnbItHV9lChoBmgJaA9DCF8mipC6W0TAlIaUUpRoFUtkaBZHQGob4REnb7F1fZQoaAZoCWgPQwjs+ZrlstU1QJSGlFKUaBVLcGgWR0BqH1jEvTPTdX2UKGgGaAloD0MI1PNuLChtVsCUhpRSlGgVS2poFkdAaiEsBhhH9XV9lChoBmgJaA9DCNofKLftN09AlIaUUpRoFU3oA2gWR0BqIs25xzaLdX2UKGgGaAloD0MIUiY1tAGCSECUhpRSlGgVS5ZoFkdAaiUep4rz5HV9lChoBmgJaA9DCIpW7gVmx0HAlIaUUpRoFUt1aBZHQGonV7IDHOt1fZQoaAZoCWgPQwgvUb01sP09wJSGlFKUaBVLeWgWR0BqKO4uscQzdX2UKGgGaAloD0MImdNlMbF3UMCUhpRSlGgVS25oFkdAaip1yNn5BXV9lChoBmgJaA9DCIv6JHfYpBlAlIaUUpRoFUuUaBZHQGoyZof0Vah1fZQoaAZoCWgPQwjQfTmzXSdHwJSGlFKUaBVLh2gWR0BqNTApKBd2dX2UKGgGaAloD0MI0qbqHtl4OMCUhpRSlGgVS3JoFkdAajU93bEgn3V9lChoBmgJaA9DCLdfPlkxXB0/lIaUUpRoFUt1aBZHQGo3ZvUBnzx1fZQoaAZoCWgPQwhdF35wPvNCwJSGlFKUaBVLY2gWR0BqPMOby6MBdX2UKGgGaAloD0MIdEAS9u0WTkCUhpRSlGgVTegDaBZHQGxtRjSXt0F1fZQoaAZoCWgPQwjRWWYRitRZwJSGlFKUaBVNpQFoFkdAbG4uGKyfMHV9lChoBmgJaA9DCHHMsieBGThAlIaUUpRoFUuraBZHQGxuU6PsAvN1fZQoaAZoCWgPQwjMQ6Z8CCrrP5SGlFKUaBVLomgWR0Bsd5suWa+fdX2UKGgGaAloD0MI63O1FfsDUMCUhpRSlGgVS2ZoFkdAbHrch1Tzd3V9lChoBmgJaA9DCAvrxrsjExXAlIaUUpRoFUuQaBZHQGx8QPiDM/11fZQoaAZoCWgPQwgzFk1nJ2slwJSGlFKUaBVLWGgWR0Bsf3FNtZV5dX2UKGgGaAloD0MIokYhyaxOOkCUhpRSlGgVS2poFkdAbIcBYmsvI3V9lChoBmgJaA9DCGtj7ISXKCDAlIaUUpRoFUuJaBZHQGyIdo371qZ1fZQoaAZoCWgPQwiXHk31ZP6BP5SGlFKUaBVLfWgWR0BsjeqFRHf/dX2UKGgGaAloD0MIo1cDlIboSMCUhpRSlGgVS3RoFkdAbJYq4pc5bXV9lChoBmgJaA9DCIwtBDkogTfAlIaUUpRoFUtUaBZHQGyZG8/Uvwp1fZQoaAZoCWgPQwjEWnwKgAE+QJSGlFKUaBVLlmgWR0BsnkCLdepodX2UKGgGaAloD0MIghq+hXVHN8CUhpRSlGgVS5FoFkdAbKTUONHYpXV9lChoBmgJaA9DCINOCB10XT1AlIaUUpRoFUuhaBZHQGysAxrSE151fZQoaAZoCWgPQwhlVYSbjDo9QJSGlFKUaBVLp2gWR0BsrRwsGxD9dX2UKGgGaAloD0MI8BXdek3vC8CUhpRSlGgVS3loFkdAbK20jTrmhnV9lChoBmgJaA9DCP5F0JhJdC1AlIaUUpRoFUuHaBZHQGyymwqy4Wl1fZQoaAZoCWgPQwicMGE0K2s4QJSGlFKUaBVLZ2gWR0BssrWI42jxdX2UKGgGaAloD0MIM1LvqZzWRUCUhpRSlGgVS3FoFkdAbLRSMtK7I3V9lChoBmgJaA9DCIXsvI3NQjVAlIaUUpRoFU3oA2gWR0BsvDn3cpLFdX2UKGgGaAloD0MIoYFYNnMIIsCUhpRSlGgVS5ZoFkdAbLyz7di2D3V9lChoBmgJaA9DCJ28yAT8IEbAlIaUUpRoFUt0aBZHQGy/YIKMNtt1fZQoaAZoCWgPQwiPN/ktOllCQJSGlFKUaBVLd2gWR0Bsyw6+36RAdX2UKGgGaAloD0MI6EoEqn+qQMCUhpRSlGgVS15oFkdAbM02hIvrW3V9lChoBmgJaA9DCPT8aaM6hSvAlIaUUpRoFUuHaBZHQGzYpzLfUF11fZQoaAZoCWgPQwjr/Ntlv64hwJSGlFKUaBVLoGgWR0Bs4b9CNS62dX2UKGgGaAloD0MI1SMNbmsLv7+UhpRSlGgVS4loFkdAbOOm7aqS5nV9lChoBmgJaA9DCDMyyF2EaQrAlIaUUpRoFUtjaBZHQGzmFRHf/FR1fZQoaAZoCWgPQwg4Ef3a+o09QJSGlFKUaBVLaGgWR0Bs8U/GEPDpdX2UKGgGaAloD0MIU+xoHOorMkCUhpRSlGgVS3hoFkdAbPm+GGmDUXV9lChoBmgJaA9DCLB0PjxLnDrAlIaUUpRoFUtkaBZHQGz7hQm/nGN1fZQoaAZoCWgPQwgHQNzVqwgpwJSGlFKUaBVN6ANoFkdAbQRt/FzdUXV9lChoBmgJaA9DCGDpfHiWEDPAlIaUUpRoFUt7aBZHQG0HDgQ6IWR1fZQoaAZoCWgPQwhuh4bFqAtBQJSGlFKUaBVLmGgWR0BtCRDohY/3dX2UKGgGaAloD0MIGArYDka+QsCUhpRSlGgVS51oFkdAbQpmcvugH3V9lChoBmgJaA9DCDlHHR1X1zdAlIaUUpRoFUuFaBZHQG0N73oLXtl1fZQoaAZoCWgPQwh5O8JpwWdMwJSGlFKUaBVLYGgWR0BtFcFUyYXwdX2UKGgGaAloD0MIW5iFdk6lRMCUhpRSlGgVS1BoFkdAbRmYjSofjnV9lChoBmgJaA9DCI/k8h/SJUxAlIaUUpRoFU3oA2gWR0BtJh5E+gUUdX2UKGgGaAloD0MI7l2DvvSqO8CUhpRSlGgVS21oFkdAbUNwLmZE2HV9lChoBmgJaA9DCHglyXN9UURAlIaUUpRoFUuyaBZHQG1X8/MW43F1fZQoaAZoCWgPQwiPM03YfiIywJSGlFKUaBVLkGgWR0BtWvQ+lj3FdX2UKGgGaAloD0MIViqoqPrZOUCUhpRSlGgVS4BoFkdAbV34s3AEdXV9lChoBmgJaA9DCCJseHqluFFAlIaUUpRoFU3oA2gWR0BtZ8UypJf6dX2UKGgGaAloD0MInigJibRNI8CUhpRSlGgVS2poFkdAbXDqB3A2ynV9lChoBmgJaA9DCIXNABdkmyxAlIaUUpRoFUubaBZHQG11gCwKSgZ1fZQoaAZoCWgPQwisOxbbpKIKwJSGlFKUaBVN6ANoFkdAbXe20AtFrnV9lChoBmgJaA9DCIpZL4ZyIj9AlIaUUpRoFUuqaBZHQG1+lfzBhx51fZQoaAZoCWgPQwhAwjBgyb0sQJSGlFKUaBVLsmgWR0BtiX4IrvsrdX2UKGgGaAloD0MI1XWopiQPPkCUhpRSlGgVS79oFkdAbZvLyMDOknV9lChoBmgJaA9DCG1Wfa62qiRAlIaUUpRoFUuJaBZHQG2m0HQhOgx1fZQoaAZoCWgPQwi4rpgR3h4fwJSGlFKUaBVLc2gWR0Btsa4UeuFIdX2UKGgGaAloD0MIZsBZSpaDHUCUhpRSlGgVS3poFkdAbbQSDAaegHV9lChoBmgJaA9DCEQ1JVmHrzFAlIaUUpRoFU3oA2gWR0BtwFSl3yI6dX2UKGgGaAloD0MI6pRHN8IaIkCUhpRSlGgVS3FoFkdAbckx7AtWdXV9lChoBmgJaA9DCP0ubM1WrkFAlIaUUpRoFUuUaBZHQG3WGdI5HVh1fZQoaAZoCWgPQwjTM73EWCZCQJSGlFKUaBVLyWgWR0Bt8RjawljWdX2UKGgGaAloD0MIX3r7c9GIQMCUhpRSlGgVS2xoFkdAbgr5vcafjHV9lChoBmgJaA9DCG11OSUglhtAlIaUUpRoFUuCaBZHQG4R8iW3Sa51fZQoaAZoCWgPQwh07KAS1zlEwJSGlFKUaBVLRmgWR0BuEipHZsbedX2UKGgGaAloD0MIqUwxB0EXNsCUhpRSlGgVS4BoFkdAbiAo60Y0mHV9lChoBmgJaA9DCDuKc9TR9TVAlIaUUpRoFUutaBZHQG4tEjHGS6l1fZQoaAZoCWgPQwiKcmn8wis7QJSGlFKUaBVN6ANoFkdAbk9f2K2rn3V9lChoBmgJaA9DCEuuYvGbUhvAlIaUUpRoFU3oA2gWR0BuX8lme18cdX2UKGgGaAloD0MI9b7xtWeWlD+UhpRSlGgVS2FoFkdAbnCJoCdSVHV9lChoBmgJaA9DCGA+WTFcjS/AlIaUUpRoFUtiaBZHQG6AJlJ6IFh1fZQoaAZoCWgPQwhA3UCBdxY+QJSGlFKUaBVLn2gWR0BuiAOvt+kQdX2UKGgGaAloD0MI7QvohTuX4r+UhpRSlGgVS1NoFkdAbrL9jPOY6XV9lChoBmgJaA9DCDY+k/3zjkJAlIaUUpRoFUutaBZHQG693BP9DQZ1fZQoaAZoCWgPQwjMQ6Z8CCI2QJSGlFKUaBVLkmgWR0Buv3buc+aCdX2UKGgGaAloD0MIMgOV8e9TIMCUhpRSlGgVS7xoFkdAbsYddVvMr3V9lChoBmgJaA9DCFaalIJuDmnAlIaUUpRoFU2DA2gWR0BvFLDfm9xqdX2UKGgGaAloD0MIMGXggJamN0CUhpRSlGgVTegDaBZHQG8jkPtlZox1fZQoaAZoCWgPQwjVXG4w1BEoQJSGlFKUaBVN6ANoFkdAbyWxHoX9BXV9lChoBmgJaA9DCGDmO/iJXURAlIaUUpRoFU3oA2gWR0BvJwaJhvzfdX2UKGgGaAloD0MIGqchqvBrNkCUhpRSlGgVS2toFkdAb0KDBdld1XV9lChoBmgJaA9DCG8vaYzW60RAlIaUUpRoFU3oA2gWR0BvUBof0VafdX2UKGgGaAloD0MINbIrLSPLY8CUhpRSlGgVTa8DaBZHQG9QOKXOW0J1fZQoaAZoCWgPQwix+47hsSM9QJSGlFKUaBVLl2gWR0BvauOU+s5odX2UKGgGaAloD0MIznADPj9GSUCUhpRSlGgVTegDaBZHQG+Ix1X/5tZ1fZQoaAZoCWgPQwgX1LfM6XROQJSGlFKUaBVN6ANoFkdAb4j2aDwpfHV9lChoBmgJaA9DCJ+Sc2IPE0JAlIaUUpRoFUtsaBZHQG+agPEsJ6Z1fZQoaAZoCWgPQwiYNbHAVzQIQJSGlFKUaBVLWmgWR0BvommJm/WUdX2UKGgGaAloD0MIm5FB7iLMAECUhpRSlGgVS35oFkdAb6qhib2DhHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bddddf8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bddddf940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bddddf9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bddddfa60>", "_build": "<function ActorCriticPolicy._build at 0x7f0bddddfaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0bddddfb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bddddfc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0bddddfca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bddddfd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bddddfdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bddddfe50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0bdddda750>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEuAfZQojAJwaZRdlChLQEtAZYwCdmaUXZQoS0BLQGV1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 128, {"pi": [64, 64], "vf": [64, 64]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 128, "num_timesteps": 10092544, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651762108.9829113, "learning_rate": 0.0003, "tensorboard_log": "./logs/LunarLander-v2-20220505-224825", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdRAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAEAAAAAAAAABfuT1vE5k/YvTaPg5bHr9/nzA+cyjlPgAAAAAAAAAAAGhaPPZgTrqeXpO5nqrlNMHp/jp2Gqw4AACAPwAAgD8aW0E9IxZuP+1Jgj2x2G+/IIU0PjGvkD0AAAAAAAAAAJqZVLqF3Z273nNnvRgjATxfig69RQ/qPAAAgD8AAIA/AIaTvEgjl7rFeY+8b6ItMyXgnbpgDE2zAACAPwAAgD/N5Yi8nO0svA1/VT2Klg08z0WYvV6y9DwAAIA/AACAP+abCD3qy5g/9QAePndCQ7/vyYo95Ps7PgAAAAAAAAAAzTi2vcr+ID96Fp29TWlJv2fvaL63Eyq9AAAAAAAAAABLKYC+x81mP77Ezz1l4yW/sU0AvzapiD4AAAAAAAAAAM311z1xOB0/C7CZvV4BTb/2SmU+ethAvgAAAAAAAAAATRYbvd7UqD8FswK/cu0pv0bHkzoQs/S9AAAAAAAAAABm9vu7liu1P+RiR7/0hUs+ShcSPN2nND4AAAAAAAAAAE37lb27LIc+Pp84PqUlGL8Wy+a9sSyoPQAAAAAAAAAAAMgtPLhhzLuI+t+8IzAPPEofUr2rLf48AACAPwAAgD97mai+JKyDP6Mn3D2LdP6+iQYxv8a4Xj0AAAAAAAAAAJqjmrzDMX+6H3+KNfkuojDqNmI71OqxtAAAgD8AAIA/5sOSvcMeST8laQG+YuBcv4klML4yaIO8AAAAAAAAAAANhcQ9fVxWPyJe4j0pplG/PuSTPnAFrLwAAAAAAAAAAIagNL4dnKQ/oNXfvpSpE7+4r9m+CPluvgAAAAAAAAAAzRCfu1CMbz9wLwW9ZydkvwknXj0HVEY7AAAAAAAAAAAAdhk84fCBumT5Bze2ugUys4bpOaoXGrYAAIA/AACAP2b/Cr1JyBI9XVR8PiXzu74B108+XniaPgAAAAAAAAAAs+FlPn/NDz92PLm+ICEuv5WElT79Xdq+AAAAAAAAAACaPpc8uo2wP0oGHD8xSf2+JPB6vKpAaL0AAAAAAAAAAJqxBL1noVs/JME8vTkacr9Smpm9lYsKvAAAAAAAAAAAs+YBPXNmYD8WaJ49rnCDv9KKJz3FnRM9AAAAAAAAAAAAMjQ8jrT7PfNLK70U+vq+ibQCPWoRujwAAAAAAAAAAABPwTyPyhK8HNSHvq79zzx8QcM8JQfOPQAAgD8AAIA/AEDaOilEJ7w6kNy8MjQrPdHXDj1d9iQ8AACAPwAAgD+apLW8V+RAP5iSC71SFXe/xGdJvVQBNL0AAAAAAAAAAAAIsTvD+Xq6CrSSNi9kbrEaoWO7pHCotQAAgD8AAIA/zdzZOj0+AbsGpgA8+lNcPEvouru2s0E9AACAPwAAgD96MgK+YlIjPzBKpLqfG1S/iZeWvr4BHz0AAAAAAAAAAEBnMT77vW8/myCpPh4BEb+/2s8+ydGtPgAAAAAAAAAAmnn4uvbac7yGHiS8ID0sPT5yvD2dsSE8AACAPwAAgD8zu2Q9PTwSu5a+dL5hcjG+zEmSvfH5jD8AAIA/AAAAAGa/M75xqvo+2+YHPjBuO78fRoa+FyA6PgAAAAAAAAAAM6e0u0iHsbpSZqQ5FaymNDdqB7la5bu4AACAPwAAgD8zqWw9Bo6rPopTzb0Piyu/gwKYPeJ6vr0AAAAAAAAAACDyKT4geC8/yK+dvRnRMb+3GcU+q6XbvQAAAAAAAAAAAEjVO65Nh7oquyi8el73uEAuEjoz+2A4AACAPwAAgD9axDk+r2+HP0mQrj7ekPe+KGTvPtermD4AAAAAAAAAAPOszL3XBYQ/AqyavmM8PL9PgKW+0pmIvgAAAAAAAAAAADD2O359lT+TewK88uhevwebDbxKyLY9AAAAAAAAAAAA18G8J10fPuVazT2A3gq/qcWSvWmJjD0AAAAAAAAAAECM6r35UaA/htUhv2T8I7/WsdK9U7XfvgAAAAAAAAAAgEtmPXE5Pz56Lj2+ivYNv3ubhT2oIuy9AAAAAAAAAAAAcA67j2ZeugkqzLnPcdm0jlqIO7jj7zgAAIA/AACAP/Oplj3Jz5I+/0UivswYNL+dgIQ9P98jvgAAAAAAAAAAs2GvPRwhMD9L7G68tIVnvyoSfz4jQQG+AAAAAAAAAAAa+mM9i0LQPamQsb7Wi/C+TFK3vfjsdr4AAAAAAAAAAI2bsr3WnzQ94RUSPy7Wvb4a/U8+ttXqPgAAAAAAAAAAZv4/vMP5cbqrCrI1pLjpMFP7XjuuX++0AACAPwAAgD8mLv29r9xyPwfiRL7SbGK/lKeMvvLgYzwAAAAAAAAAAFq+or0oC/E9JuWoPitaCL+Wuw690/2hPgAAAAAAAAAAMwUaPDZqTbxFUBM9BO5pPZzUcr25OEy8AACAPwAAgD9Nd3Y91vL9PheeA74PWDS/4+XlPanIEL4AAAAAAAAAAEA1n70Rmbc/2AABv6Y/yb2zBI+9NNCRvgAAAAAAAAAAzdaGvK7Vj7pPo8WznmFRL2qu0LhqxpozAACAPwAAgD8NLGA+k9EBPx66173yhTS/6KH1Pqlml74AAAAAAAAAAM0sGTyP1mO6JZrmPB+q6jj/D8A4dWjkNwAAgD8AAIA/s1c2Pq3nsz8gos4+yvbrvl9VvT42cpk+AAAAAAAAAAAAcJM6FN+0P9BS6T1bkMI9ivapuqtn07wAAAAAAAAAAJoJjDvD2TG6+Hh/MsX6ALEXa6G6OF0hswAAgD8AAIA/YMY3PquhXD9m1MY9e2otv+pB2D45AMi9AAAAAAAAAACa3z499/17P4vlFD3VgGe/ucEbPviQaz0AAAAAAAAAAM28rrtcF1W6SnAaNDM2uy+VPZo7C7KfswAAgD8AAIA/s6o8PX/NhD8MCcE9PgFuv/ic/z1AsXS9AAAAAAAAAADzOY+9Qqy1P25Tyb730DW+5TfIvbOGi74AAAAAAAAAACAHBT7so3w/t7AMPgOkZr+fcLU+bl/uvQAAAAAAAAAAM98oPIXh0ruj5dw9osXLPMVaQL3/8qg9AACAPwAAgD+auZg7w7lmuhtFaLiJzquyS+M7u94QhzcAAIA/AACAP5rh1D2QuN8+Y0JwvqJLTr/0hiY+qxdtvgAAAAAAAAAAzQxgvTctwT/CTNG+eihePr5fIb0mhna+AAAAAAAAAADmdtq9fiiWP8X9kr5jczW/M0mUvhMHbr4AAAAAAAAAAM05ZD5nRXk/lq1lPadlMr/RoAQ/URk5vgAAAAAAAAAAmnlAvCmyUryWBQQ9i/E+Pf11mz1l7Lk8AACAPwAAgD/N1AC7TzB6vDnwwrx3qSA9htxPPRGENL0AAIA/AACAPzOXnz0qNJ0/yhq3PqSELr/jZyo+hR7mPgAAAAAAAAAAmv4APSfrJz7RAD29q6IDv/nr8TwSyZ+8AAAAAAAAAAATGhc+hbkhPxBU5b3MUj6/C3ySPvtSYb4AAAAAAAAAADNHTjwpqDi6+MQwsvNEXDCkYJS6oyVzMgAAgD8AAIA/IOoovijLPT/HxjY9PQU9v9bOqr56ipc9AAAAAAAAAABgZK2+8xKAP3DNNr3XCC2/8LxCv0X2zD0AAAAAAAAAAAC4v7sUyI26K1p7NitvUjHadD07dhyVtQAAgD8AAIA/TWQ3Pj+PaT8bsAw7dnU/v8bC1D47Yym+AAAAAAAAAAAz16874SiJuqCuBjy9oSs5ZSIjutNAHzgAAIA/AACAPwDA9btIY4G6mES6t6lm2bJ3VcU6O+rYNgAAgD8AAIA/ZgavOynjsj9aajg+MbFlvpqgx7vvRCW9AAAAAAAAAAAzdVK9iTA9PfJTgz5bYLG+iNGGPu1HpT4AAAAAAAAAAPpEKz7BL5E/6+vdPrMKB786s80+Tg1XPgAAAAAAAAAAAN0QPZekuD/CEBM/87YrPo4aTLwQXeA8AAAAAAAAAAAm0ZI+/lmRP0KMWj1Juxm/RKgiP2Pzkr4AAAAAAAAAAEA5n705bDA/zu+WvXzDUb/n1w6+5AcLuwAAAAAAAAAAAEjNvPYYGjt/2CE+QLOhvhJnlr2KFHs9AACAPwAAAACa6pA8SCOFun8VprvHCcS4PA6JurArOTgAAIA/AACAP5odu70gAKE//sm6vtJmGL/YnW++A4jrvgAAAAAAAAAAM8EMvK75y7pLNxg+yvBiPHOQwTpCtUe9AACAPwAAgD9NNOA9fA40P9Vv1z2stWa/VwC1Pu6FEL4AAAAAAAAAAG00Ib68mAQ/G4OOPoanOL9hUHy+vcayPgAAAAAAAAAA02YmvqigwT7x8sk+PWBBv/cxCb4yF4Y+AAAAAAAAAAAAWmq84cCKunAJKzirvOIywIohupALQ7cAAIA/AACAP2a6tztxcKc/J3o5PU4bB7/XsAK8VtKbuwAAAAAAAAAAmhWou7Yjsz/we3S9jXsgviUQTrqmmJ68AAAAAAAAAADN7Ec75LCpP3of8DzBsuC+vUtzvNVwU70AAAAAAAAAAABLw7xLeIo+CTMHPmP8J79fpgG94xPOPQAAAAAAAAAAAFmJPIoesT85Ow0/zc3bvqmLVLxCEiG9AAAAAAAAAAAGuUc+1JEIPwqYmL6U/RG/+AYsPhGRsb4AAAAAAAAAAM3xwrzh1IK6xPINOkS0eTOS2Za7l30iuQAAgD8AAIA/mrGQPK4Lmbo2JIq4W3WKs6VSITuuip83AACAPwAAgD8ACYY8qMnrPUJ7m7wEOOi+BE4gPYa2bT0AAAAAAAAAAJbZaL4RpYE/QnppvqJMNL8ZMhu/KiUDPQAAAAAAAAAAzTzwu0glgLokzjw4AJIGM/QUDbtTk1m3AACAPwAAgD8NUpw91F7+PfgU0b4djwq/UudFvoCWSL4AAAAAAAAAAIDTP71XQg0/rQfOPJwzTr8T+fi93m+zPQAAAAAAAAAAc8W9PRPyVj+LAOU9ZNhbv8ZWkD6QzzE9AAAAAAAAAADNvRa9pO/QPQ7eUT6rswu/hBqrPTKngz4AAAAAAAAAAJofajy4SY273+CmvYQCLjwCBsA8kYEYvQAAgD8AAIA/zZysuhR+sLq0h4O8i1aaPLKzazvy/oW9AACAPwAAgD/NgIs7Uvj/uRP5aLX5QbawD54xO7IlpzQAAIA/AACAP83nyDwUJJW6frmPM+EWci9Fp9e607HEswAAgD8AAIA/AOYHvcsetz+L8KC+vr8Evf/5tLzQTte9AAAAAAAAAAAA2Ma7JwOAP186SrzkeIe/RED9vAneNjwAAAAAAAAAAG3kUz4oyNE+qZTCvr67Er9FG14+0xW+vgAAAAAAAAAAAKOLvHEVartAe3K8ULySPK1LjzxC7Xu9AACAPwAAgD9m5ps7wxEquhL4LrNXSyAuIqKlOgYxzTMAAIA/AACAPzPYjT32rCC6npUsON5RsbHvpji7zrJKtwAAgD8AAIA/mmzGPPbvPDvFriO+3hpyvsG3f72+0qi9AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS4BLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2NglqjdacUCUhpRSlIwBbJRLp4wBdJRHQLOG8kqc3ER1fZQoaAZoCWgPQwjYgAhxZRZxQJSGlFKUaBVLlGgWR0CzhvZrpJPJdX2UKGgGaAloD0MICAPPvQfHcUCUhpRSlGgVS6xoFkdAs4cEzzmOl3V9lChoBmgJaA9DCMUDyqacWnJAlIaUUpRoFUuzaBZHQLOHBNHH3lF1fZQoaAZoCWgPQwiv6qwWGJByQJSGlFKUaBVLyWgWR0CzhwONYKYzdX2UKGgGaAloD0MIb5wU5v1gc0CUhpRSlGgVS7ZoFkdAs4cJwT/Q0HV9lChoBmgJaA9DCM14W+l1/nFAlIaUUpRoFUukaBZHQLOHDpoK2KF1fZQoaAZoCWgPQwie7jzxHPBxQJSGlFKUaBVLkWgWR0CzhyIOUdJbdX2UKGgGaAloD0MIlEp4Qm/UckCUhpRSlGgVS79oFkdAs4cnai9Iw3V9lChoBmgJaA9DCNe9FYnJOHRAlIaUUpRoFUvRaBZHQLOHLjKPn0V1fZQoaAZoCWgPQwiRD3o266ZxQJSGlFKUaBVLkmgWR0Czhz6dc0LudX2UKGgGaAloD0MIB3qobUM4ckCUhpRSlGgVS4doFkdAs4dPFFUhm3V9lChoBmgJaA9DCO0t5Xxx7nNAlIaUUpRoFUuzaBZHQLOHXKHfuTl1fZQoaAZoCWgPQwigxr35zUJyQJSGlFKUaBVLqGgWR0Czh1vVmSQpdX2UKGgGaAloD0MINIRjlr2UckCUhpRSlGgVS5RoFkdAs4djgflp5HV9lChoBmgJaA9DCBb3H5kOKHJAlIaUUpRoFUueaBZHQLOHc9lVcUx1fZQoaAZoCWgPQwjkhAmj2TJyQJSGlFKUaBVLqmgWR0Czh3lpKzzFdX2UKGgGaAloD0MIxxFr8SklckCUhpRSlGgVS7RoFkdAs4eMaAFxGXV9lChoBmgJaA9DCP88DRikqG9AlIaUUpRoFUueaBZHQLOHo21D0Dl1fZQoaAZoCWgPQwhxqyAGusNwQJSGlFKUaBVLkmgWR0Czh6slw97odX2UKGgGaAloD0MIoMA7+TTuc0CUhpRSlGgVS8ZoFkdAs4eoxZdOZnV9lChoBmgJaA9DCDxO0ZHcdXJAlIaUUpRoFUuaaBZHQLOHx4o7V8V1fZQoaAZoCWgPQwhu/InKxqtwQJSGlFKUaBVLj2gWR0Czh88bvPTodX2UKGgGaAloD0MIwvhp3Bubc0CUhpRSlGgVS6VoFkdAs4fofcN6PnV9lChoBmgJaA9DCNjWT//ZPnJAlIaUUpRoFUuVaBZHQLOIGUYbbUR1fZQoaAZoCWgPQwiSzOodLhVzQJSGlFKUaBVLmWgWR0CziBhfa6BidX2UKGgGaAloD0MIOpLLf0gsc0CUhpRSlGgVS8JoFkdAs4ged1+y7nV9lChoBmgJaA9DCNi4/l1f/XJAlIaUUpRoFUu3aBZHQLOIJyAQQMB1fZQoaAZoCWgPQwgCmggbniJzQJSGlFKUaBVLxWgWR0CziC2KQ7tBdX2UKGgGaAloD0MIWYXNAFdZckCUhpRSlGgVS8NoFkdAs4grFzdUKnV9lChoBmgJaA9DCNSYEHOJdnJAlIaUUpRoFUu0aBZHQLOIMbfP5YZ1fZQoaAZoCWgPQwjVBbzM8OxxQJSGlFKUaBVLpWgWR0CziDm/zreJdX2UKGgGaAloD0MIP4wQHq07cUCUhpRSlGgVS8VoFkdAs4g+H6/IsHV9lChoBmgJaA9DCAZjRKJQrHFAlIaUUpRoFUuwaBZHQLOIZnbItDl1fZQoaAZoCWgPQwgoYDsYcQtyQJSGlFKUaBVLlGgWR0CziHiG8EmqdX2UKGgGaAloD0MI9pZyvpjXckCUhpRSlGgVS7loFkdAs4h308NhE3V9lChoBmgJaA9DCIBmEB9Y0nBAlIaUUpRoFUuyaBZHQLOIf73fygB1fZQoaAZoCWgPQwhCsoAJHK5yQJSGlFKUaBVLkmgWR0CziH+f/WDpdX2UKGgGaAloD0MIjX40nDJdckCUhpRSlGgVS51oFkdAs4h/JuEVWXV9lChoBmgJaA9DCETDYtS1LXFAlIaUUpRoFUupaBZHQLOIfvphWo51fZQoaAZoCWgPQwi6vDlcaxVzQJSGlFKUaBVLtGgWR0CziIYvWYnfdX2UKGgGaAloD0MI7MGk+HhtcUCUhpRSlGgVS45oFkdAs4iNev6j33V9lChoBmgJaA9DCGgG8YEdqXNAlIaUUpRoFUupaBZHQLOIi4/NZ/11fZQoaAZoCWgPQwi2TfG46JlwQJSGlFKUaBVLlGgWR0CziJk690zTdX2UKGgGaAloD0MIuaXVkLhwckCUhpRSlGgVS71oFkdAs4iYQumJnHV9lChoBmgJaA9DCJPJqZ3h9HFAlIaUUpRoFUuiaBZHQLOIn+qzZ6F1fZQoaAZoCWgPQwjpnnWNFudzQJSGlFKUaBVLrmgWR0CziJ9MfzSUdX2UKGgGaAloD0MIQPomTQOHc0CUhpRSlGgVS9toFkdAs4ieb9ZRsXV9lChoBmgJaA9DCGsNpfYihnFAlIaUUpRoFUuzaBZHQLOIp0Rvm5l1fZQoaAZoCWgPQwhM32sIzg50QJSGlFKUaBVLyWgWR0CziKVy/9HddX2UKGgGaAloD0MIjXvzG+aXc0CUhpRSlGgVS5toFkdAs4izoyKvV3V9lChoBmgJaA9DCAFqatnaaHJAlIaUUpRoFUuyaBZHQLOItyOJcgR1fZQoaAZoCWgPQwh90LNZ9cRyQJSGlFKUaBVLrGgWR0CziL3AAQxvdX2UKGgGaAloD0MI5BOy8/aBckCUhpRSlGgVS6NoFkdAs4jEAksz23V9lChoBmgJaA9DCNi5aTNOXnNAlIaUUpRoFUu1aBZHQLOIy8qnWJ91fZQoaAZoCWgPQwguHt5zIJBxQJSGlFKUaBVLi2gWR0CziMqWszVMdX2UKGgGaAloD0MIie/ErBf1ckCUhpRSlGgVS7ZoFkdAs4jOu5jH43V9lChoBmgJaA9DCMrfvaNGCnFAlIaUUpRoFUuTaBZHQLOI4LXL/0d1fZQoaAZoCWgPQwgBbhYvFsBxQJSGlFKUaBVLomgWR0CziOlmOEM9dX2UKGgGaAloD0MIxca8jjigcUCUhpRSlGgVS61oFkdAs4juK64DtHV9lChoBmgJaA9DCPJgi93+XXJAlIaUUpRoFUuPaBZHQLOI+J9iMHd1fZQoaAZoCWgPQwj2lQfp6bJzQJSGlFKUaBVLsmgWR0CziQG07bL2dX2UKGgGaAloD0MIrU1jey2VckCUhpRSlGgVS5ZoFkdAs4kAPTXrdHV9lChoBmgJaA9DCABV3LjFrHFAlIaUUpRoFUuhaBZHQLOJBl1KXfJ1fZQoaAZoCWgPQwjzkCkfwlNxQJSGlFKUaBVLpWgWR0CziREbYK6XdX2UKGgGaAloD0MIUI2XbhIOdECUhpRSlGgVS6xoFkdAs4kQcwQDm3V9lChoBmgJaA9DCGluhbCarXJAlIaUUpRoFUu+aBZHQLOJImQKa5R1fZQoaAZoCWgPQwgkufyHdBFwQJSGlFKUaBVLnGgWR0CziSF+EytWdX2UKGgGaAloD0MICJRNuUKSckCUhpRSlGgVS7toFkdAs4km8SPEKnV9lChoBmgJaA9DCDliLT5Fs3JAlIaUUpRoFUu8aBZHQLOJQPuogmt1fZQoaAZoCWgPQwiDiT+KupFzQJSGlFKUaBVLy2gWR0CziUWFvhqCdX2UKGgGaAloD0MIrp6T3vc0cUCUhpRSlGgVS6ZoFkdAs4lSml67d3V9lChoBmgJaA9DCLaA0Hp4S3JAlIaUUpRoFUuyaBZHQLOJWCKaXrt1fZQoaAZoCWgPQwiKq8q+a4tyQJSGlFKUaBVLpWgWR0CziWQSnLq2dX2UKGgGaAloD0MIn3HhQAjVc0CUhpRSlGgVS61oFkdAs4lpjJ+2E3V9lChoBmgJaA9DCKjIIeKm/XBAlIaUUpRoFUuoaBZHQLOJaYNiH7B1fZQoaAZoCWgPQwixpx3+WoFxQJSGlFKUaBVLjGgWR0CziWjDwYtQdX2UKGgGaAloD0MIPdf34aCrcECUhpRSlGgVS5xoFkdAs4luJP69CnV9lChoBmgJaA9DCBtIF5uW8HFAlIaUUpRoFUuqaBZHQLOJe9IPK+11fZQoaAZoCWgPQwjz4sRXu9RyQJSGlFKUaBVLmGgWR0CziYF6/qPfdX2UKGgGaAloD0MIgEV+/ZCWc0CUhpRSlGgVS7ZoFkdAs4mMj2SMcnV9lChoBmgJaA9DCBtIF5sWC3BAlIaUUpRoFUudaBZHQLOJrsenyd51fZQoaAZoCWgPQwj8bU+QmNBxQJSGlFKUaBVLo2gWR0CzicL4FiazdX2UKGgGaAloD0MIOGdEaW9LckCUhpRSlGgVS6RoFkdAs4nC5J9RaXV9lChoBmgJaA9DCB9q2zAKP3FAlIaUUpRoFUuWaBZHQLOJwNM495h1fZQoaAZoCWgPQwgwStBfaCRxQJSGlFKUaBVLnWgWR0Czic1jEvTPdX2UKGgGaAloD0MIC/FIvHwpc0CUhpRSlGgVS6JoFkdAs4nM5NoJzHV9lChoBmgJaA9DCPVHGAYsinBAlIaUUpRoFUuPaBZHQLOJ0fnOjZd1fZQoaAZoCWgPQwiY9s39VThvQJSGlFKUaBVLlGgWR0Czidk+cH4XdX2UKGgGaAloD0MISOAPPz9lcUCUhpRSlGgVS7JoFkdAs4nke/5+IHV9lChoBmgJaA9DCEfjUL+L9nFAlIaUUpRoFUvCaBZHQLOJ4/EwWWR1fZQoaAZoCWgPQwi2TfG46JtzQJSGlFKUaBVLqGgWR0CzifAdfb9IdX2UKGgGaAloD0MIMgOV8a/pcECUhpRSlGgVS69oFkdAs4n8r5IpY3V9lChoBmgJaA9DCM8tdCXC33JAlIaUUpRoFUuVaBZHQLOKBWsA/9p1fZQoaAZoCWgPQwguU5PgDXtxQJSGlFKUaBVLrWgWR0Czigoa5wwTdX2UKGgGaAloD0MIqdkDrQDPckCUhpRSlGgVS6FoFkdAs4oemKqGUXV9lChoBmgJaA9DCLJmZJA74HRAlIaUUpRoFUvOaBZHQLOKHSLZSNx1fZQoaAZoCWgPQwiFe2Xe6qRzQJSGlFKUaBVLvWgWR0CzihzKgZjydX2UKGgGaAloD0MIBOPg0jG1cECUhpRSlGgVS5hoFkdAs4osK7ZnMHV9lChoBmgJaA9DCBxdpbvrFm9AlIaUUpRoFUuWaBZHQLOKK0GeMAF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2220730ec8e6ea819d15b32ea4eda7b4931535292c0beccae3bd4f1e084fd32a
3
- size 245320
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b7c6b208682018438782cb9e3d9f3689e5727bd9cd36705fb9e8b3df7f69a8d
3
+ size 210244
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -11.884949500567746, "std_reward": 22.17668066366, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T16:09:59.728721"}
 
1
+ {"mean_reward": 286.77780272119446, "std_reward": 27.334526354505204, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T00:12:26.576557"}
thicc-ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fa19dea60c5c531e27822ddf3079bb5a22684c4dd5c05db706e27eb14aa2e209
3
- size 295948
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ff0f16a8755728dcf0321fb9921db0a58c5aa909f7f9831a839b4faf1c37d38
3
+ size 549468
thicc-ppo-LunarLander-v2/data CHANGED
@@ -4,36 +4,36 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbc1567820>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbc15678b0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbc1567940>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbc15679d0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fdbc1567a60>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fdbc1567af0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbc1567b80>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fdbc1567c10>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbc1567ca0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbc1567d30>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbc1567dc0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fdbc1562780>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
- ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZQoS0BLIGV1ZXUu",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
  128,
28
- 64,
29
  {
30
  "pi": [
31
  64,
32
- 32
33
  ],
34
  "vf": [
35
  64,
36
- 32
37
  ]
38
  }
39
  ]
@@ -59,48 +59,48 @@
59
  "dtype": "int64",
60
  "_np_random": null
61
  },
62
- "n_envs": 32,
63
- "num_timesteps": 327680,
64
- "_total_timesteps": 320000,
65
  "_num_timesteps_at_start": 0,
66
  "seed": null,
67
  "action_noise": null,
68
- "start_time": 1651737880.4975297,
69
  "learning_rate": 0.0003,
70
- "tensorboard_log": null,
71
  "lr_schedule": {
72
  ":type:": "<class 'function'>",
73
  ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
74
  },
75
  "_last_obs": {
76
  ":type:": "<class 'numpy.ndarray'>",
77
- ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADOU+TwfF/86Dg2SPnf/lL4ao0M8HdAfPgAAAAAAAAAANm1pvt3rcj97mN6+zcIrv+7+qL6rF2++AAAAAAAAAAC2ovg+HXRfPnRXBr1PDh6/z8H4PgYhu7sAAAAAAAAAAPO6mz2PSim6rdbhuzcdr7xAXhu7pVOZvQAAAAAAAIA/wISiPa5X5Dki2JI8PzC1PKuTgzsUfp49AACAPwAAgD8axSS+UgbzPo3u5710W6W+PYDQvMzQNr4AAAAAAAAAAF3ZzT7q/li9QCzpO/DxKb0npJE85xoQvQAAAAAAAAAATco7vQrxCTzdAyo+5Fk9vCkxRr0aZkE+AAAAAAAAAADzuxm+OWqsP6zjor4Amai+PQhPvr+wpb0AAAAAAAAAADNRhby4Gu06wtvjO8lLzbxzbzE8ZYS/PQAAAAAAAAAApvPIPRz7WbzLaG49UjE3vrRdjryrAMC+AACAPwAAgD9mCM8914cvOpXEVDy2LcW8j/IYPA5jrr0AAAAAAACAPxr3Fr1SH/482iwVPjaoub4i34M9wIpNPgAAAAAAAAAAM3MfOmiPjz9b77M8cpQHv0GXu7oIrRw9AAAAAAAAAACztvI9H1ONOlypKD1pTgw9GcrLuPpY67wAAAAAAAAAAFuTDL9Hvhq+NRLrvGE82T1sfII+wkhbvgAAgD8AAIA/gLgGPqQKAbsCqhi8vdPRPGAXnrykX7M9AACAPwAAgD/zDri+EWNJve8dILtrBxM8UYISPiZFMT4AAIA/AAAAAPBX0T7Hjuq92isrP4Su8r1uTwC/rHosPgAAAAAAAAAA81nBPUhDnroqvi691buHvKaACbpmPG29AACAPwAAgD/tLAA+e1DzO2ZcZryHtq+8Yr0PPQjr/DsAAAAAAAAAAJqkqz1IMaI5GeCZvLxA/Lrr7xy8Qx/eOwAAgD8AAAAAmhnJPFL4urmW28g8BMLvOjGaLrtbdNG7AACAPwAAgD8NAMg9cSVuOnOGqjzftiQ8qiDDO+7iDT0AAAAAAAAAAHMjQD+6+QC+hJqePbFFvzyWjPk9+JD7PQAAAAAAAAAA1qrbPuDt2L2lzuw+HGKWvJeTrr0k1L8+AACAPwAAgD+aHbM70RcAPx4jlzrQHiW/yJC3PKoYHL4AAAAAAAAAAJp3ZLzgmK8/QsW4vbDyfb7oR+q8IXe2vQAAAAAAAAAAM6L/PAVZrz+T8d0+kJyZvjyswbxGoAS9AAAAAAAAAABm+3A+e1fgO0rBEL1gOKU8O947PU0bij0AAAAAAAAAANrFnT2ksBE4CiR8vBsPOb0ALSU6P4UjPgAAgD8AAAAAZtniPcO5ErrLEOC6kadltd/LV7rg9QE6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
78
  },
79
  "_last_episode_starts": {
80
  ":type:": "<class 'numpy.ndarray'>",
81
- ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
82
  },
83
  "_last_original_obs": null,
84
  "_episode_num": 0,
85
  "use_sde": false,
86
  "sde_sample_freq": -1,
87
- "_current_progress_remaining": -0.02400000000000002,
88
  "ep_info_buffer": {
89
  ":type:": "<class 'collections.deque'>",
90
- ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITKd1G9R2McCUhpRSlIwBbJRLV4wBdJRHQGoUp1aGHpN1fZQoaAZoCWgPQwgH6pRHN8L4P5SGlFKUaBVN6ANoFkdAahcfvnbItHV9lChoBmgJaA9DCF8mipC6W0TAlIaUUpRoFUtkaBZHQGob4REnb7F1fZQoaAZoCWgPQwjs+ZrlstU1QJSGlFKUaBVLcGgWR0BqH1jEvTPTdX2UKGgGaAloD0MI1PNuLChtVsCUhpRSlGgVS2poFkdAaiEsBhhH9XV9lChoBmgJaA9DCNofKLftN09AlIaUUpRoFU3oA2gWR0BqIs25xzaLdX2UKGgGaAloD0MIUiY1tAGCSECUhpRSlGgVS5ZoFkdAaiUep4rz5HV9lChoBmgJaA9DCIpW7gVmx0HAlIaUUpRoFUt1aBZHQGonV7IDHOt1fZQoaAZoCWgPQwgvUb01sP09wJSGlFKUaBVLeWgWR0BqKO4uscQzdX2UKGgGaAloD0MImdNlMbF3UMCUhpRSlGgVS25oFkdAaip1yNn5BXV9lChoBmgJaA9DCIv6JHfYpBlAlIaUUpRoFUuUaBZHQGoyZof0Vah1fZQoaAZoCWgPQwjQfTmzXSdHwJSGlFKUaBVLh2gWR0BqNTApKBd2dX2UKGgGaAloD0MI0qbqHtl4OMCUhpRSlGgVS3JoFkdAajU93bEgn3V9lChoBmgJaA9DCLdfPlkxXB0/lIaUUpRoFUt1aBZHQGo3ZvUBnzx1fZQoaAZoCWgPQwhdF35wPvNCwJSGlFKUaBVLY2gWR0BqPMOby6MBdX2UKGgGaAloD0MIdEAS9u0WTkCUhpRSlGgVTegDaBZHQGxtRjSXt0F1fZQoaAZoCWgPQwjRWWYRitRZwJSGlFKUaBVNpQFoFkdAbG4uGKyfMHV9lChoBmgJaA9DCHHMsieBGThAlIaUUpRoFUuraBZHQGxuU6PsAvN1fZQoaAZoCWgPQwjMQ6Z8CCrrP5SGlFKUaBVLomgWR0Bsd5suWa+fdX2UKGgGaAloD0MI63O1FfsDUMCUhpRSlGgVS2ZoFkdAbHrch1Tzd3V9lChoBmgJaA9DCAvrxrsjExXAlIaUUpRoFUuQaBZHQGx8QPiDM/11fZQoaAZoCWgPQwgzFk1nJ2slwJSGlFKUaBVLWGgWR0Bsf3FNtZV5dX2UKGgGaAloD0MIokYhyaxOOkCUhpRSlGgVS2poFkdAbIcBYmsvI3V9lChoBmgJaA9DCGtj7ISXKCDAlIaUUpRoFUuJaBZHQGyIdo371qZ1fZQoaAZoCWgPQwiXHk31ZP6BP5SGlFKUaBVLfWgWR0BsjeqFRHf/dX2UKGgGaAloD0MIo1cDlIboSMCUhpRSlGgVS3RoFkdAbJYq4pc5bXV9lChoBmgJaA9DCIwtBDkogTfAlIaUUpRoFUtUaBZHQGyZG8/Uvwp1fZQoaAZoCWgPQwjEWnwKgAE+QJSGlFKUaBVLlmgWR0BsnkCLdepodX2UKGgGaAloD0MIghq+hXVHN8CUhpRSlGgVS5FoFkdAbKTUONHYpXV9lChoBmgJaA9DCINOCB10XT1AlIaUUpRoFUuhaBZHQGysAxrSE151fZQoaAZoCWgPQwhlVYSbjDo9QJSGlFKUaBVLp2gWR0BsrRwsGxD9dX2UKGgGaAloD0MI8BXdek3vC8CUhpRSlGgVS3loFkdAbK20jTrmhnV9lChoBmgJaA9DCP5F0JhJdC1AlIaUUpRoFUuHaBZHQGyymwqy4Wl1fZQoaAZoCWgPQwicMGE0K2s4QJSGlFKUaBVLZ2gWR0BssrWI42jxdX2UKGgGaAloD0MIM1LvqZzWRUCUhpRSlGgVS3FoFkdAbLRSMtK7I3V9lChoBmgJaA9DCIXsvI3NQjVAlIaUUpRoFU3oA2gWR0BsvDn3cpLFdX2UKGgGaAloD0MIoYFYNnMIIsCUhpRSlGgVS5ZoFkdAbLyz7di2D3V9lChoBmgJaA9DCJ28yAT8IEbAlIaUUpRoFUt0aBZHQGy/YIKMNtt1fZQoaAZoCWgPQwiPN/ktOllCQJSGlFKUaBVLd2gWR0Bsyw6+36RAdX2UKGgGaAloD0MI6EoEqn+qQMCUhpRSlGgVS15oFkdAbM02hIvrW3V9lChoBmgJaA9DCPT8aaM6hSvAlIaUUpRoFUuHaBZHQGzYpzLfUF11fZQoaAZoCWgPQwjr/Ntlv64hwJSGlFKUaBVLoGgWR0Bs4b9CNS62dX2UKGgGaAloD0MI1SMNbmsLv7+UhpRSlGgVS4loFkdAbOOm7aqS5nV9lChoBmgJaA9DCDMyyF2EaQrAlIaUUpRoFUtjaBZHQGzmFRHf/FR1fZQoaAZoCWgPQwg4Ef3a+o09QJSGlFKUaBVLaGgWR0Bs8U/GEPDpdX2UKGgGaAloD0MIU+xoHOorMkCUhpRSlGgVS3hoFkdAbPm+GGmDUXV9lChoBmgJaA9DCLB0PjxLnDrAlIaUUpRoFUtkaBZHQGz7hQm/nGN1fZQoaAZoCWgPQwgHQNzVqwgpwJSGlFKUaBVN6ANoFkdAbQRt/FzdUXV9lChoBmgJaA9DCGDpfHiWEDPAlIaUUpRoFUt7aBZHQG0HDgQ6IWR1fZQoaAZoCWgPQwhuh4bFqAtBQJSGlFKUaBVLmGgWR0BtCRDohY/3dX2UKGgGaAloD0MIGArYDka+QsCUhpRSlGgVS51oFkdAbQpmcvugH3V9lChoBmgJaA9DCDlHHR1X1zdAlIaUUpRoFUuFaBZHQG0N73oLXtl1fZQoaAZoCWgPQwh5O8JpwWdMwJSGlFKUaBVLYGgWR0BtFcFUyYXwdX2UKGgGaAloD0MIW5iFdk6lRMCUhpRSlGgVS1BoFkdAbRmYjSofjnV9lChoBmgJaA9DCI/k8h/SJUxAlIaUUpRoFU3oA2gWR0BtJh5E+gUUdX2UKGgGaAloD0MI7l2DvvSqO8CUhpRSlGgVS21oFkdAbUNwLmZE2HV9lChoBmgJaA9DCHglyXN9UURAlIaUUpRoFUuyaBZHQG1X8/MW43F1fZQoaAZoCWgPQwiPM03YfiIywJSGlFKUaBVLkGgWR0BtWvQ+lj3FdX2UKGgGaAloD0MIViqoqPrZOUCUhpRSlGgVS4BoFkdAbV34s3AEdXV9lChoBmgJaA9DCCJseHqluFFAlIaUUpRoFU3oA2gWR0BtZ8UypJf6dX2UKGgGaAloD0MInigJibRNI8CUhpRSlGgVS2poFkdAbXDqB3A2ynV9lChoBmgJaA9DCIXNABdkmyxAlIaUUpRoFUubaBZHQG11gCwKSgZ1fZQoaAZoCWgPQwisOxbbpKIKwJSGlFKUaBVN6ANoFkdAbXe20AtFrnV9lChoBmgJaA9DCIpZL4ZyIj9AlIaUUpRoFUuqaBZHQG1+lfzBhx51fZQoaAZoCWgPQwhAwjBgyb0sQJSGlFKUaBVLsmgWR0BtiX4IrvsrdX2UKGgGaAloD0MI1XWopiQPPkCUhpRSlGgVS79oFkdAbZvLyMDOknV9lChoBmgJaA9DCG1Wfa62qiRAlIaUUpRoFUuJaBZHQG2m0HQhOgx1fZQoaAZoCWgPQwi4rpgR3h4fwJSGlFKUaBVLc2gWR0Btsa4UeuFIdX2UKGgGaAloD0MIZsBZSpaDHUCUhpRSlGgVS3poFkdAbbQSDAaegHV9lChoBmgJaA9DCEQ1JVmHrzFAlIaUUpRoFU3oA2gWR0BtwFSl3yI6dX2UKGgGaAloD0MI6pRHN8IaIkCUhpRSlGgVS3FoFkdAbckx7AtWdXV9lChoBmgJaA9DCP0ubM1WrkFAlIaUUpRoFUuUaBZHQG3WGdI5HVh1fZQoaAZoCWgPQwjTM73EWCZCQJSGlFKUaBVLyWgWR0Bt8RjawljWdX2UKGgGaAloD0MIX3r7c9GIQMCUhpRSlGgVS2xoFkdAbgr5vcafjHV9lChoBmgJaA9DCG11OSUglhtAlIaUUpRoFUuCaBZHQG4R8iW3Sa51fZQoaAZoCWgPQwh07KAS1zlEwJSGlFKUaBVLRmgWR0BuEipHZsbedX2UKGgGaAloD0MIqUwxB0EXNsCUhpRSlGgVS4BoFkdAbiAo60Y0mHV9lChoBmgJaA9DCDuKc9TR9TVAlIaUUpRoFUutaBZHQG4tEjHGS6l1fZQoaAZoCWgPQwiKcmn8wis7QJSGlFKUaBVN6ANoFkdAbk9f2K2rn3V9lChoBmgJaA9DCEuuYvGbUhvAlIaUUpRoFU3oA2gWR0BuX8lme18cdX2UKGgGaAloD0MI9b7xtWeWlD+UhpRSlGgVS2FoFkdAbnCJoCdSVHV9lChoBmgJaA9DCGA+WTFcjS/AlIaUUpRoFUtiaBZHQG6AJlJ6IFh1fZQoaAZoCWgPQwhA3UCBdxY+QJSGlFKUaBVLn2gWR0BuiAOvt+kQdX2UKGgGaAloD0MI7QvohTuX4r+UhpRSlGgVS1NoFkdAbrL9jPOY6XV9lChoBmgJaA9DCDY+k/3zjkJAlIaUUpRoFUutaBZHQG693BP9DQZ1fZQoaAZoCWgPQwjMQ6Z8CCI2QJSGlFKUaBVLkmgWR0Buv3buc+aCdX2UKGgGaAloD0MIMgOV8e9TIMCUhpRSlGgVS7xoFkdAbsYddVvMr3V9lChoBmgJaA9DCFaalIJuDmnAlIaUUpRoFU2DA2gWR0BvFLDfm9xqdX2UKGgGaAloD0MIMGXggJamN0CUhpRSlGgVTegDaBZHQG8jkPtlZox1fZQoaAZoCWgPQwjVXG4w1BEoQJSGlFKUaBVN6ANoFkdAbyWxHoX9BXV9lChoBmgJaA9DCGDmO/iJXURAlIaUUpRoFU3oA2gWR0BvJwaJhvzfdX2UKGgGaAloD0MIGqchqvBrNkCUhpRSlGgVS2toFkdAb0KDBdld1XV9lChoBmgJaA9DCG8vaYzW60RAlIaUUpRoFU3oA2gWR0BvUBof0VafdX2UKGgGaAloD0MINbIrLSPLY8CUhpRSlGgVTa8DaBZHQG9QOKXOW0J1fZQoaAZoCWgPQwix+47hsSM9QJSGlFKUaBVLl2gWR0BvauOU+s5odX2UKGgGaAloD0MIznADPj9GSUCUhpRSlGgVTegDaBZHQG+Ix1X/5tZ1fZQoaAZoCWgPQwgX1LfM6XROQJSGlFKUaBVN6ANoFkdAb4j2aDwpfHV9lChoBmgJaA9DCJ+Sc2IPE0JAlIaUUpRoFUtsaBZHQG+agPEsJ6Z1fZQoaAZoCWgPQwiYNbHAVzQIQJSGlFKUaBVLWmgWR0BvommJm/WUdX2UKGgGaAloD0MIm5FB7iLMAECUhpRSlGgVS35oFkdAb6qhib2DhHVlLg=="
91
  },
92
  "ep_success_buffer": {
93
  ":type:": "<class 'collections.deque'>",
94
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
  },
96
- "_n_updates": 40,
97
  "n_steps": 1024,
98
  "gamma": 0.999,
99
  "gae_lambda": 0.98,
100
  "ent_coef": 0.01,
101
  "vf_coef": 0.5,
102
  "max_grad_norm": 0.5,
103
- "batch_size": 32,
104
  "n_epochs": 4,
105
  "clip_range": {
106
  ":type:": "<class 'function'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bddddf8b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bddddf940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bddddf9d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bddddfa60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0bddddfaf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0bddddfb80>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bddddfc10>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0bddddfca0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bddddfd30>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bddddfdc0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bddddfe50>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0bdddda750>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEuAfZQojAJwaZRdlChLQEtAZYwCdmaUXZQoS0BLQGV1ZXUu",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
  128,
28
+ 128,
29
  {
30
  "pi": [
31
  64,
32
+ 64
33
  ],
34
  "vf": [
35
  64,
36
+ 64
37
  ]
38
  }
39
  ]
 
59
  "dtype": "int64",
60
  "_np_random": null
61
  },
62
+ "n_envs": 128,
63
+ "num_timesteps": 10092544,
64
+ "_total_timesteps": 10000000,
65
  "_num_timesteps_at_start": 0,
66
  "seed": null,
67
  "action_noise": null,
68
+ "start_time": 1651762108.9829113,
69
  "learning_rate": 0.0003,
70
+ "tensorboard_log": "./logs/LunarLander-v2-20220505-224825",
71
  "lr_schedule": {
72
  ":type:": "<class 'function'>",
73
  ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
74
  },
75
  "_last_obs": {
76
  ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gAWVdRAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAEAAAAAAAAABfuT1vE5k/YvTaPg5bHr9/nzA+cyjlPgAAAAAAAAAAAGhaPPZgTrqeXpO5nqrlNMHp/jp2Gqw4AACAPwAAgD8aW0E9IxZuP+1Jgj2x2G+/IIU0PjGvkD0AAAAAAAAAAJqZVLqF3Z273nNnvRgjATxfig69RQ/qPAAAgD8AAIA/AIaTvEgjl7rFeY+8b6ItMyXgnbpgDE2zAACAPwAAgD/N5Yi8nO0svA1/VT2Klg08z0WYvV6y9DwAAIA/AACAP+abCD3qy5g/9QAePndCQ7/vyYo95Ps7PgAAAAAAAAAAzTi2vcr+ID96Fp29TWlJv2fvaL63Eyq9AAAAAAAAAABLKYC+x81mP77Ezz1l4yW/sU0AvzapiD4AAAAAAAAAAM311z1xOB0/C7CZvV4BTb/2SmU+ethAvgAAAAAAAAAATRYbvd7UqD8FswK/cu0pv0bHkzoQs/S9AAAAAAAAAABm9vu7liu1P+RiR7/0hUs+ShcSPN2nND4AAAAAAAAAAE37lb27LIc+Pp84PqUlGL8Wy+a9sSyoPQAAAAAAAAAAAMgtPLhhzLuI+t+8IzAPPEofUr2rLf48AACAPwAAgD97mai+JKyDP6Mn3D2LdP6+iQYxv8a4Xj0AAAAAAAAAAJqjmrzDMX+6H3+KNfkuojDqNmI71OqxtAAAgD8AAIA/5sOSvcMeST8laQG+YuBcv4klML4yaIO8AAAAAAAAAAANhcQ9fVxWPyJe4j0pplG/PuSTPnAFrLwAAAAAAAAAAIagNL4dnKQ/oNXfvpSpE7+4r9m+CPluvgAAAAAAAAAAzRCfu1CMbz9wLwW9ZydkvwknXj0HVEY7AAAAAAAAAAAAdhk84fCBumT5Bze2ugUys4bpOaoXGrYAAIA/AACAP2b/Cr1JyBI9XVR8PiXzu74B108+XniaPgAAAAAAAAAAs+FlPn/NDz92PLm+ICEuv5WElT79Xdq+AAAAAAAAAACaPpc8uo2wP0oGHD8xSf2+JPB6vKpAaL0AAAAAAAAAAJqxBL1noVs/JME8vTkacr9Smpm9lYsKvAAAAAAAAAAAs+YBPXNmYD8WaJ49rnCDv9KKJz3FnRM9AAAAAAAAAAAAMjQ8jrT7PfNLK70U+vq+ibQCPWoRujwAAAAAAAAAAABPwTyPyhK8HNSHvq79zzx8QcM8JQfOPQAAgD8AAIA/AEDaOilEJ7w6kNy8MjQrPdHXDj1d9iQ8AACAPwAAgD+apLW8V+RAP5iSC71SFXe/xGdJvVQBNL0AAAAAAAAAAAAIsTvD+Xq6CrSSNi9kbrEaoWO7pHCotQAAgD8AAIA/zdzZOj0+AbsGpgA8+lNcPEvouru2s0E9AACAPwAAgD96MgK+YlIjPzBKpLqfG1S/iZeWvr4BHz0AAAAAAAAAAEBnMT77vW8/myCpPh4BEb+/2s8+ydGtPgAAAAAAAAAAmnn4uvbac7yGHiS8ID0sPT5yvD2dsSE8AACAPwAAgD8zu2Q9PTwSu5a+dL5hcjG+zEmSvfH5jD8AAIA/AAAAAGa/M75xqvo+2+YHPjBuO78fRoa+FyA6PgAAAAAAAAAAM6e0u0iHsbpSZqQ5FaymNDdqB7la5bu4AACAPwAAgD8zqWw9Bo6rPopTzb0Piyu/gwKYPeJ6vr0AAAAAAAAAACDyKT4geC8/yK+dvRnRMb+3GcU+q6XbvQAAAAAAAAAAAEjVO65Nh7oquyi8el73uEAuEjoz+2A4AACAPwAAgD9axDk+r2+HP0mQrj7ekPe+KGTvPtermD4AAAAAAAAAAPOszL3XBYQ/AqyavmM8PL9PgKW+0pmIvgAAAAAAAAAAADD2O359lT+TewK88uhevwebDbxKyLY9AAAAAAAAAAAA18G8J10fPuVazT2A3gq/qcWSvWmJjD0AAAAAAAAAAECM6r35UaA/htUhv2T8I7/WsdK9U7XfvgAAAAAAAAAAgEtmPXE5Pz56Lj2+ivYNv3ubhT2oIuy9AAAAAAAAAAAAcA67j2ZeugkqzLnPcdm0jlqIO7jj7zgAAIA/AACAP/Oplj3Jz5I+/0UivswYNL+dgIQ9P98jvgAAAAAAAAAAs2GvPRwhMD9L7G68tIVnvyoSfz4jQQG+AAAAAAAAAAAa+mM9i0LQPamQsb7Wi/C+TFK3vfjsdr4AAAAAAAAAAI2bsr3WnzQ94RUSPy7Wvb4a/U8+ttXqPgAAAAAAAAAAZv4/vMP5cbqrCrI1pLjpMFP7XjuuX++0AACAPwAAgD8mLv29r9xyPwfiRL7SbGK/lKeMvvLgYzwAAAAAAAAAAFq+or0oC/E9JuWoPitaCL+Wuw690/2hPgAAAAAAAAAAMwUaPDZqTbxFUBM9BO5pPZzUcr25OEy8AACAPwAAgD9Nd3Y91vL9PheeA74PWDS/4+XlPanIEL4AAAAAAAAAAEA1n70Rmbc/2AABv6Y/yb2zBI+9NNCRvgAAAAAAAAAAzdaGvK7Vj7pPo8WznmFRL2qu0LhqxpozAACAPwAAgD8NLGA+k9EBPx66173yhTS/6KH1Pqlml74AAAAAAAAAAM0sGTyP1mO6JZrmPB+q6jj/D8A4dWjkNwAAgD8AAIA/s1c2Pq3nsz8gos4+yvbrvl9VvT42cpk+AAAAAAAAAAAAcJM6FN+0P9BS6T1bkMI9ivapuqtn07wAAAAAAAAAAJoJjDvD2TG6+Hh/MsX6ALEXa6G6OF0hswAAgD8AAIA/YMY3PquhXD9m1MY9e2otv+pB2D45AMi9AAAAAAAAAACa3z499/17P4vlFD3VgGe/ucEbPviQaz0AAAAAAAAAAM28rrtcF1W6SnAaNDM2uy+VPZo7C7KfswAAgD8AAIA/s6o8PX/NhD8MCcE9PgFuv/ic/z1AsXS9AAAAAAAAAADzOY+9Qqy1P25Tyb730DW+5TfIvbOGi74AAAAAAAAAACAHBT7so3w/t7AMPgOkZr+fcLU+bl/uvQAAAAAAAAAAM98oPIXh0ruj5dw9osXLPMVaQL3/8qg9AACAPwAAgD+auZg7w7lmuhtFaLiJzquyS+M7u94QhzcAAIA/AACAP5rh1D2QuN8+Y0JwvqJLTr/0hiY+qxdtvgAAAAAAAAAAzQxgvTctwT/CTNG+eihePr5fIb0mhna+AAAAAAAAAADmdtq9fiiWP8X9kr5jczW/M0mUvhMHbr4AAAAAAAAAAM05ZD5nRXk/lq1lPadlMr/RoAQ/URk5vgAAAAAAAAAAmnlAvCmyUryWBQQ9i/E+Pf11mz1l7Lk8AACAPwAAgD/N1AC7TzB6vDnwwrx3qSA9htxPPRGENL0AAIA/AACAPzOXnz0qNJ0/yhq3PqSELr/jZyo+hR7mPgAAAAAAAAAAmv4APSfrJz7RAD29q6IDv/nr8TwSyZ+8AAAAAAAAAAATGhc+hbkhPxBU5b3MUj6/C3ySPvtSYb4AAAAAAAAAADNHTjwpqDi6+MQwsvNEXDCkYJS6oyVzMgAAgD8AAIA/IOoovijLPT/HxjY9PQU9v9bOqr56ipc9AAAAAAAAAABgZK2+8xKAP3DNNr3XCC2/8LxCv0X2zD0AAAAAAAAAAAC4v7sUyI26K1p7NitvUjHadD07dhyVtQAAgD8AAIA/TWQ3Pj+PaT8bsAw7dnU/v8bC1D47Yym+AAAAAAAAAAAz16874SiJuqCuBjy9oSs5ZSIjutNAHzgAAIA/AACAPwDA9btIY4G6mES6t6lm2bJ3VcU6O+rYNgAAgD8AAIA/ZgavOynjsj9aajg+MbFlvpqgx7vvRCW9AAAAAAAAAAAzdVK9iTA9PfJTgz5bYLG+iNGGPu1HpT4AAAAAAAAAAPpEKz7BL5E/6+vdPrMKB786s80+Tg1XPgAAAAAAAAAAAN0QPZekuD/CEBM/87YrPo4aTLwQXeA8AAAAAAAAAAAm0ZI+/lmRP0KMWj1Juxm/RKgiP2Pzkr4AAAAAAAAAAEA5n705bDA/zu+WvXzDUb/n1w6+5AcLuwAAAAAAAAAAAEjNvPYYGjt/2CE+QLOhvhJnlr2KFHs9AACAPwAAAACa6pA8SCOFun8VprvHCcS4PA6JurArOTgAAIA/AACAP5odu70gAKE//sm6vtJmGL/YnW++A4jrvgAAAAAAAAAAM8EMvK75y7pLNxg+yvBiPHOQwTpCtUe9AACAPwAAgD9NNOA9fA40P9Vv1z2stWa/VwC1Pu6FEL4AAAAAAAAAAG00Ib68mAQ/G4OOPoanOL9hUHy+vcayPgAAAAAAAAAA02YmvqigwT7x8sk+PWBBv/cxCb4yF4Y+AAAAAAAAAAAAWmq84cCKunAJKzirvOIywIohupALQ7cAAIA/AACAP2a6tztxcKc/J3o5PU4bB7/XsAK8VtKbuwAAAAAAAAAAmhWou7Yjsz/we3S9jXsgviUQTrqmmJ68AAAAAAAAAADN7Ec75LCpP3of8DzBsuC+vUtzvNVwU70AAAAAAAAAAABLw7xLeIo+CTMHPmP8J79fpgG94xPOPQAAAAAAAAAAAFmJPIoesT85Ow0/zc3bvqmLVLxCEiG9AAAAAAAAAAAGuUc+1JEIPwqYmL6U/RG/+AYsPhGRsb4AAAAAAAAAAM3xwrzh1IK6xPINOkS0eTOS2Za7l30iuQAAgD8AAIA/mrGQPK4Lmbo2JIq4W3WKs6VSITuuip83AACAPwAAgD8ACYY8qMnrPUJ7m7wEOOi+BE4gPYa2bT0AAAAAAAAAAJbZaL4RpYE/QnppvqJMNL8ZMhu/KiUDPQAAAAAAAAAAzTzwu0glgLokzjw4AJIGM/QUDbtTk1m3AACAPwAAgD8NUpw91F7+PfgU0b4djwq/UudFvoCWSL4AAAAAAAAAAIDTP71XQg0/rQfOPJwzTr8T+fi93m+zPQAAAAAAAAAAc8W9PRPyVj+LAOU9ZNhbv8ZWkD6QzzE9AAAAAAAAAADNvRa9pO/QPQ7eUT6rswu/hBqrPTKngz4AAAAAAAAAAJofajy4SY273+CmvYQCLjwCBsA8kYEYvQAAgD8AAIA/zZysuhR+sLq0h4O8i1aaPLKzazvy/oW9AACAPwAAgD/NgIs7Uvj/uRP5aLX5QbawD54xO7IlpzQAAIA/AACAP83nyDwUJJW6frmPM+EWci9Fp9e607HEswAAgD8AAIA/AOYHvcsetz+L8KC+vr8Evf/5tLzQTte9AAAAAAAAAAAA2Ma7JwOAP186SrzkeIe/RED9vAneNjwAAAAAAAAAAG3kUz4oyNE+qZTCvr67Er9FG14+0xW+vgAAAAAAAAAAAKOLvHEVartAe3K8ULySPK1LjzxC7Xu9AACAPwAAgD9m5ps7wxEquhL4LrNXSyAuIqKlOgYxzTMAAIA/AACAPzPYjT32rCC6npUsON5RsbHvpji7zrJKtwAAgD8AAIA/mmzGPPbvPDvFriO+3hpyvsG3f72+0qi9AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS4BLCIaUjAFDlHSUUpQu"
78
  },
79
  "_last_episode_starts": {
80
  ":type:": "<class 'numpy.ndarray'>",
81
+ ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="
82
  },
83
  "_last_original_obs": null,
84
  "_episode_num": 0,
85
  "use_sde": false,
86
  "sde_sample_freq": -1,
87
+ "_current_progress_remaining": -0.009254400000000107,
88
  "ep_info_buffer": {
89
  ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2NglqjdacUCUhpRSlIwBbJRLp4wBdJRHQLOG8kqc3ER1fZQoaAZoCWgPQwjYgAhxZRZxQJSGlFKUaBVLlGgWR0CzhvZrpJPJdX2UKGgGaAloD0MICAPPvQfHcUCUhpRSlGgVS6xoFkdAs4cEzzmOl3V9lChoBmgJaA9DCMUDyqacWnJAlIaUUpRoFUuzaBZHQLOHBNHH3lF1fZQoaAZoCWgPQwiv6qwWGJByQJSGlFKUaBVLyWgWR0CzhwONYKYzdX2UKGgGaAloD0MIb5wU5v1gc0CUhpRSlGgVS7ZoFkdAs4cJwT/Q0HV9lChoBmgJaA9DCM14W+l1/nFAlIaUUpRoFUukaBZHQLOHDpoK2KF1fZQoaAZoCWgPQwie7jzxHPBxQJSGlFKUaBVLkWgWR0CzhyIOUdJbdX2UKGgGaAloD0MIlEp4Qm/UckCUhpRSlGgVS79oFkdAs4cnai9Iw3V9lChoBmgJaA9DCNe9FYnJOHRAlIaUUpRoFUvRaBZHQLOHLjKPn0V1fZQoaAZoCWgPQwiRD3o266ZxQJSGlFKUaBVLkmgWR0Czhz6dc0LudX2UKGgGaAloD0MIB3qobUM4ckCUhpRSlGgVS4doFkdAs4dPFFUhm3V9lChoBmgJaA9DCO0t5Xxx7nNAlIaUUpRoFUuzaBZHQLOHXKHfuTl1fZQoaAZoCWgPQwigxr35zUJyQJSGlFKUaBVLqGgWR0Czh1vVmSQpdX2UKGgGaAloD0MINIRjlr2UckCUhpRSlGgVS5RoFkdAs4djgflp5HV9lChoBmgJaA9DCBb3H5kOKHJAlIaUUpRoFUueaBZHQLOHc9lVcUx1fZQoaAZoCWgPQwjkhAmj2TJyQJSGlFKUaBVLqmgWR0Czh3lpKzzFdX2UKGgGaAloD0MIxxFr8SklckCUhpRSlGgVS7RoFkdAs4eMaAFxGXV9lChoBmgJaA9DCP88DRikqG9AlIaUUpRoFUueaBZHQLOHo21D0Dl1fZQoaAZoCWgPQwhxqyAGusNwQJSGlFKUaBVLkmgWR0Czh6slw97odX2UKGgGaAloD0MIoMA7+TTuc0CUhpRSlGgVS8ZoFkdAs4eoxZdOZnV9lChoBmgJaA9DCDxO0ZHcdXJAlIaUUpRoFUuaaBZHQLOHx4o7V8V1fZQoaAZoCWgPQwhu/InKxqtwQJSGlFKUaBVLj2gWR0Czh88bvPTodX2UKGgGaAloD0MIwvhp3Bubc0CUhpRSlGgVS6VoFkdAs4fofcN6PnV9lChoBmgJaA9DCNjWT//ZPnJAlIaUUpRoFUuVaBZHQLOIGUYbbUR1fZQoaAZoCWgPQwiSzOodLhVzQJSGlFKUaBVLmWgWR0CziBhfa6BidX2UKGgGaAloD0MIOpLLf0gsc0CUhpRSlGgVS8JoFkdAs4ged1+y7nV9lChoBmgJaA9DCNi4/l1f/XJAlIaUUpRoFUu3aBZHQLOIJyAQQMB1fZQoaAZoCWgPQwgCmggbniJzQJSGlFKUaBVLxWgWR0CziC2KQ7tBdX2UKGgGaAloD0MIWYXNAFdZckCUhpRSlGgVS8NoFkdAs4grFzdUKnV9lChoBmgJaA9DCNSYEHOJdnJAlIaUUpRoFUu0aBZHQLOIMbfP5YZ1fZQoaAZoCWgPQwjVBbzM8OxxQJSGlFKUaBVLpWgWR0CziDm/zreJdX2UKGgGaAloD0MIP4wQHq07cUCUhpRSlGgVS8VoFkdAs4g+H6/IsHV9lChoBmgJaA9DCAZjRKJQrHFAlIaUUpRoFUuwaBZHQLOIZnbItDl1fZQoaAZoCWgPQwgoYDsYcQtyQJSGlFKUaBVLlGgWR0CziHiG8EmqdX2UKGgGaAloD0MI9pZyvpjXckCUhpRSlGgVS7loFkdAs4h308NhE3V9lChoBmgJaA9DCIBmEB9Y0nBAlIaUUpRoFUuyaBZHQLOIf73fygB1fZQoaAZoCWgPQwhCsoAJHK5yQJSGlFKUaBVLkmgWR0CziH+f/WDpdX2UKGgGaAloD0MIjX40nDJdckCUhpRSlGgVS51oFkdAs4h/JuEVWXV9lChoBmgJaA9DCETDYtS1LXFAlIaUUpRoFUupaBZHQLOIfvphWo51fZQoaAZoCWgPQwi6vDlcaxVzQJSGlFKUaBVLtGgWR0CziIYvWYnfdX2UKGgGaAloD0MI7MGk+HhtcUCUhpRSlGgVS45oFkdAs4iNev6j33V9lChoBmgJaA9DCGgG8YEdqXNAlIaUUpRoFUupaBZHQLOIi4/NZ/11fZQoaAZoCWgPQwi2TfG46JlwQJSGlFKUaBVLlGgWR0CziJk690zTdX2UKGgGaAloD0MIuaXVkLhwckCUhpRSlGgVS71oFkdAs4iYQumJnHV9lChoBmgJaA9DCJPJqZ3h9HFAlIaUUpRoFUuiaBZHQLOIn+qzZ6F1fZQoaAZoCWgPQwjpnnWNFudzQJSGlFKUaBVLrmgWR0CziJ9MfzSUdX2UKGgGaAloD0MIQPomTQOHc0CUhpRSlGgVS9toFkdAs4ieb9ZRsXV9lChoBmgJaA9DCGsNpfYihnFAlIaUUpRoFUuzaBZHQLOIp0Rvm5l1fZQoaAZoCWgPQwhM32sIzg50QJSGlFKUaBVLyWgWR0CziKVy/9HddX2UKGgGaAloD0MIjXvzG+aXc0CUhpRSlGgVS5toFkdAs4izoyKvV3V9lChoBmgJaA9DCAFqatnaaHJAlIaUUpRoFUuyaBZHQLOItyOJcgR1fZQoaAZoCWgPQwh90LNZ9cRyQJSGlFKUaBVLrGgWR0CziL3AAQxvdX2UKGgGaAloD0MI5BOy8/aBckCUhpRSlGgVS6NoFkdAs4jEAksz23V9lChoBmgJaA9DCNi5aTNOXnNAlIaUUpRoFUu1aBZHQLOIy8qnWJ91fZQoaAZoCWgPQwguHt5zIJBxQJSGlFKUaBVLi2gWR0CziMqWszVMdX2UKGgGaAloD0MIie/ErBf1ckCUhpRSlGgVS7ZoFkdAs4jOu5jH43V9lChoBmgJaA9DCMrfvaNGCnFAlIaUUpRoFUuTaBZHQLOI4LXL/0d1fZQoaAZoCWgPQwgBbhYvFsBxQJSGlFKUaBVLomgWR0CziOlmOEM9dX2UKGgGaAloD0MIxca8jjigcUCUhpRSlGgVS61oFkdAs4juK64DtHV9lChoBmgJaA9DCPJgi93+XXJAlIaUUpRoFUuPaBZHQLOI+J9iMHd1fZQoaAZoCWgPQwj2lQfp6bJzQJSGlFKUaBVLsmgWR0CziQG07bL2dX2UKGgGaAloD0MIrU1jey2VckCUhpRSlGgVS5ZoFkdAs4kAPTXrdHV9lChoBmgJaA9DCABV3LjFrHFAlIaUUpRoFUuhaBZHQLOJBl1KXfJ1fZQoaAZoCWgPQwjzkCkfwlNxQJSGlFKUaBVLpWgWR0CziREbYK6XdX2UKGgGaAloD0MIUI2XbhIOdECUhpRSlGgVS6xoFkdAs4kQcwQDm3V9lChoBmgJaA9DCGluhbCarXJAlIaUUpRoFUu+aBZHQLOJImQKa5R1fZQoaAZoCWgPQwgkufyHdBFwQJSGlFKUaBVLnGgWR0CziSF+EytWdX2UKGgGaAloD0MICJRNuUKSckCUhpRSlGgVS7toFkdAs4km8SPEKnV9lChoBmgJaA9DCDliLT5Fs3JAlIaUUpRoFUu8aBZHQLOJQPuogmt1fZQoaAZoCWgPQwiDiT+KupFzQJSGlFKUaBVLy2gWR0CziUWFvhqCdX2UKGgGaAloD0MIrp6T3vc0cUCUhpRSlGgVS6ZoFkdAs4lSml67d3V9lChoBmgJaA9DCLaA0Hp4S3JAlIaUUpRoFUuyaBZHQLOJWCKaXrt1fZQoaAZoCWgPQwiKq8q+a4tyQJSGlFKUaBVLpWgWR0CziWQSnLq2dX2UKGgGaAloD0MIn3HhQAjVc0CUhpRSlGgVS61oFkdAs4lpjJ+2E3V9lChoBmgJaA9DCKjIIeKm/XBAlIaUUpRoFUuoaBZHQLOJaYNiH7B1fZQoaAZoCWgPQwixpx3+WoFxQJSGlFKUaBVLjGgWR0CziWjDwYtQdX2UKGgGaAloD0MIPdf34aCrcECUhpRSlGgVS5xoFkdAs4luJP69CnV9lChoBmgJaA9DCBtIF5uW8HFAlIaUUpRoFUuqaBZHQLOJe9IPK+11fZQoaAZoCWgPQwjz4sRXu9RyQJSGlFKUaBVLmGgWR0CziYF6/qPfdX2UKGgGaAloD0MIgEV+/ZCWc0CUhpRSlGgVS7ZoFkdAs4mMj2SMcnV9lChoBmgJaA9DCBtIF5sWC3BAlIaUUpRoFUudaBZHQLOJrsenyd51fZQoaAZoCWgPQwj8bU+QmNBxQJSGlFKUaBVLo2gWR0CzicL4FiazdX2UKGgGaAloD0MIOGdEaW9LckCUhpRSlGgVS6RoFkdAs4nC5J9RaXV9lChoBmgJaA9DCB9q2zAKP3FAlIaUUpRoFUuWaBZHQLOJwNM495h1fZQoaAZoCWgPQwgwStBfaCRxQJSGlFKUaBVLnWgWR0Czic1jEvTPdX2UKGgGaAloD0MIC/FIvHwpc0CUhpRSlGgVS6JoFkdAs4nM5NoJzHV9lChoBmgJaA9DCPVHGAYsinBAlIaUUpRoFUuPaBZHQLOJ0fnOjZd1fZQoaAZoCWgPQwiY9s39VThvQJSGlFKUaBVLlGgWR0Czidk+cH4XdX2UKGgGaAloD0MISOAPPz9lcUCUhpRSlGgVS7JoFkdAs4nke/5+IHV9lChoBmgJaA9DCEfjUL+L9nFAlIaUUpRoFUvCaBZHQLOJ4/EwWWR1fZQoaAZoCWgPQwi2TfG46JtzQJSGlFKUaBVLqGgWR0CzifAdfb9IdX2UKGgGaAloD0MIMgOV8a/pcECUhpRSlGgVS69oFkdAs4n8r5IpY3V9lChoBmgJaA9DCM8tdCXC33JAlIaUUpRoFUuVaBZHQLOKBWsA/9p1fZQoaAZoCWgPQwguU5PgDXtxQJSGlFKUaBVLrWgWR0Czigoa5wwTdX2UKGgGaAloD0MIqdkDrQDPckCUhpRSlGgVS6FoFkdAs4oemKqGUXV9lChoBmgJaA9DCLJmZJA74HRAlIaUUpRoFUvOaBZHQLOKHSLZSNx1fZQoaAZoCWgPQwiFe2Xe6qRzQJSGlFKUaBVLvWgWR0CzihzKgZjydX2UKGgGaAloD0MIBOPg0jG1cECUhpRSlGgVS5hoFkdAs4osK7ZnMHV9lChoBmgJaA9DCBxdpbvrFm9AlIaUUpRoFUuWaBZHQLOKK0GeMAF1ZS4="
91
  },
92
  "ep_success_buffer": {
93
  ":type:": "<class 'collections.deque'>",
94
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
  },
96
+ "_n_updates": 308,
97
  "n_steps": 1024,
98
  "gamma": 0.999,
99
  "gae_lambda": 0.98,
100
  "ent_coef": 0.01,
101
  "vf_coef": 0.5,
102
  "max_grad_norm": 0.5,
103
+ "batch_size": 128,
104
  "n_epochs": 4,
105
  "clip_range": {
106
  ":type:": "<class 'function'>",
thicc-ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c0fe870e00bd55a13ab0fa4ec51d2a5cf16eea6c4de7a9a941d5cbefbfac2ae9
3
- size 185029
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:987533a66c819d8f09cff901744c2068edfb26f12d93a4535c0b0d296734bddf
3
+ size 351237
thicc-ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f1c2c0271d01faf248eabed69f3be44c6f424e781fa561eb46cd050eb7507b4f
3
- size 93557
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7fa65fe901e10959ef02d89e10e8ca13f3c0fd83eb6542e0464ee598cdcd135
3
+ size 176629