CWhy commited on
Commit
ab8021c
·
1 Parent(s): dfd1207

run with id LunarLander-v2-20220505-160437

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -690.70 +/- 32.49
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: -11.88 +/- 22.18
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1093d7c820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1093d7c8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1093d7c940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1093d7c9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f1093d7ca60>", "forward": "<function ActorCriticPolicy.forward at 0x7f1093d7caf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1093d7cb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1093d7cc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1093d7cca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1093d7cd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1093d7cdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1093d76780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZQoS0BLIGV1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 64, {"pi": [64, 32], "vf": [64, 32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 16000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651737802.2067938, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAFjD3SXLc/q/GBPsSXOb7iFwq+pOQuvQAAAAAAAAAAmrPLPK7n3jkFubu8T81YvMlM9ro+sPq8AAAAAAAAAABK89++ioebP3D2Z78mYTq/fjF/P5aD1T4AAAAAAAAAAGYVnbyw9Ps+gNzqvVz+iL8//QY+DnTcPQAAAAAAAAAAwKWzvS4Orj+4ekO/BamJvj5uBT476XU+AAAAAAAAAACaiKW8uD26P9ojBb+fV+0+FOu9PN/iDz4AAAAAAAAAAEa6mr4ZZzE/2z0Hv4Q5TL91kRQ+dJGVPgAAAAAAAAAAs6+KPUv7SD+Tw1M+L6F8v38yC79zLaS+AAAAAAAAAAAt4UM+H4iMPx0yaD8F2UC/krzavq3FCb8AAAAAAAAAADNZ7b2cULQ/awE9vzncFL5lglg+V8WrPgAAAAAAAAAAmorgPv7AMz+A5Fg//eKZv2Xmfb9OQ9e+AAAAAAAAAACz3Z89HEKuPw8RuT5GAZm+EJJGvT6QgrwAAAAAAAAAAEDL9z1WRco/t7MEP4wVhD7hX929yN3GvQAAAAAAAAAA6PGXvrw7hj+zrlK/TCf7vlUL5D7NQ7M9AAAAAAAAAACofLO+bNyeP04FWL/HK+u+KoJiPhLmNT0AAAAAAAAAAACWBDyUp7c/FezPPntMDT+sNh+8TJfMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1A0UeCeTXcCUhpRSlIwBbJRLSowBdJRHQAYwudwvQF91fZQoaAZoCWgPQwhiZwqd125GwJSGlFKUaBVLQWgWR0AGStHQQcxTdX2UKGgGaAloD0MIU3WPbK6EWsCUhpRSlGgVS21oFkdABmTewcHW0HV9lChoBmgJaA9DCPFHUWfuu13AlIaUUpRoFUtnaBZHQAZoEB8x9G91fZQoaAZoCWgPQwjFWRE10dVXwJSGlFKUaBVLQWgWR0AGfd43WFvidX2UKGgGaAloD0MIgc8PI4SyVsCUhpRSlGgVS0VoFkdABrgH/tICl3V9lChoBmgJaA9DCNLfS+HBj2PAlIaUUpRoFUtTaBZHQAbYj0L+glF1fZQoaAZoCWgPQwgRje4gdqtpwJSGlFKUaBVLgGgWR0AHEjqv/zasdX2UKGgGaAloD0MIWVLuPoeRdsCUhpRSlGgVS1RoFkdABydf9gnc+XV9lChoBmgJaA9DCFOVtrjGKGbAlIaUUpRoFUtqaBZHQAdWdupCKJl1fZQoaAZoCWgPQwhgI0kQrtZXwJSGlFKUaBVLPWgWR0AHc2kzoEB9dX2UKGgGaAloD0MIA5mdRW9WZcCUhpRSlGgVS2poFkdAB4KyfL9uP3V9lChoBmgJaA9DCCdsPxnjiWHAlIaUUpRoFUtbaBZHQAedSMtK7I11fZQoaAZoCWgPQwhhGLDkKmBZwJSGlFKUaBVLSGgWR0AHpzHS4OMEdX2UKGgGaAloD0MITKQ0m8eAU8CUhpRSlGgVS0doFkdACBRGc4HX3HV9lChoBmgJaA9DCLMj1Xd+e2fAlIaUUpRoFUtGaBZHQAhJZntfG+91fZQoaAZoCWgPQwiG4/kMKLV0wJSGlFKUaBVLX2gWR0AIUriEQGwBdX2UKGgGaAloD0MITgzJycRaVcCUhpRSlGgVS1toFkdACFLZi/fwZ3V9lChoBmgJaA9DCG+e6pAbKmXAlIaUUpRoFUtZaBZHQAhiZ4Oc2BJ1fZQoaAZoCWgPQwiSA3Y1+TBxwJSGlFKUaBVLWGgWR0AIYLE1l5GCdX2UKGgGaAloD0MId9mvO91JZMCUhpRSlGgVS29oFkdACIdgfEGZ/nV9lChoBmgJaA9DCBaiQ+BIVFjAlIaUUpRoFUt2aBZHQAimu1WsA/91fZQoaAZoCWgPQwjaklURrrpzwJSGlFKUaBVLYGgWR0AI9VWCEpRXdX2UKGgGaAloD0MIlDKpoQ2kU8CUhpRSlGgVS0JoFkdACPSeiBXjl3V9lChoBmgJaA9DCLVrQlpjO1nAlIaUUpRoFUtPaBZHQAkUvoNd7fJ1fZQoaAZoCWgPQwjaklURbo1vwJSGlFKUaBVLS2gWR0AJSAFxGUfQdX2UKGgGaAloD0MIb0VighoVVcCUhpRSlGgVS1VoFkdACVKq4pc5bXV9lChoBmgJaA9DCD7ONGH7b1rAlIaUUpRoFUtlaBZHQAlPpyIYWLx1fZQoaAZoCWgPQwhuiVxwhuVpwJSGlFKUaBVLa2gWR0AJgrvsqrimdX2UKGgGaAloD0MIZyrEI/F2csCUhpRSlGgVS0RoFkdACcG4ZuQ6qHV9lChoBmgJaA9DCHkHeNLCMVnAlIaUUpRoFUtKaBZHQAn3cQAdXDF1fZQoaAZoCWgPQwh2VDVB1Jt2wJSGlFKUaBVLbWgWR0AJ/1pTMqz7dX2UKGgGaAloD0MILbEyGvlAOkCUhpRSlGgVS1NoFkdACiy31BdD6XV9lChoBmgJaA9DCHqobcNoh3TAlIaUUpRoFUthaBZHQAoxdyDIzWR1fZQoaAZoCWgPQwjpKAezCbJUwJSGlFKUaBVLWWgWR0AKQkgOjIq9dX2UKGgGaAloD0MI3pGx2vwcdcCUhpRSlGgVS2hoFkdACpNN8E3bVXV9lChoBmgJaA9DCKTFGcOcGWLAlIaUUpRoFUtjaBZHQAqtPxhDw6R1fZQoaAZoCWgPQwjmrE85ZoV/wJSGlFKUaBVLV2gWR0AK3fVI7NjcdX2UKGgGaAloD0MI+IxEaASvNECUhpRSlGgVS1hoFkdACuPI4lyBCnV9lChoBmgJaA9DCHxinSpf52XAlIaUUpRoFUtPaBZHQAsPA44p+c91fZQoaAZoCWgPQwjlub4PBz56wJSGlFKUaBVLcGgWR0ALGgOBlMAWdX2UKGgGaAloD0MIyAp+G2K+XMCUhpRSlGgVS11oFkdACyMiKR+z+nV9lChoBmgJaA9DCPQWD+85gDLAlIaUUpRoFUtJaBZHQAudOymhufp1fZQoaAZoCWgPQwg5tp4hHI57wJSGlFKUaBVLaGgWR0ALmzQeFL39dX2UKGgGaAloD0MIdLaA0HrOWMCUhpRSlGgVS1VoFkdAC6YfnwG4Z3V9lChoBmgJaA9DCE8g7BQrQHTAlIaUUpRoFUtgaBZHQAulr2xptaZ1fZQoaAZoCWgPQwgziXrBp+1ZwJSGlFKUaBVLT2gWR0ALuf029+PSdX2UKGgGaAloD0MIByXMtP2JV8CUhpRSlGgVS1VoFkdADA/yoXKr73V9lChoBmgJaA9DCNnRONTvHV3AlIaUUpRoFUtRaBZHQAwOJtSAH3V1fZQoaAZoCWgPQwgXt9EA3uxZwJSGlFKUaBVLfmgWR0AMFDWsijcmdX2UKGgGaAloD0MItDo5Q3FUXsCUhpRSlGgVS2JoFkdADFwF1SwW33V9lChoBmgJaA9DCBubHam+8FzAlIaUUpRoFUtJaBZHQAyByjpLVWl1fZQoaAZoCWgPQwiiYTHq2sJowJSGlFKUaBVLSWgWR0AMqu+yquKXdX2UKGgGaAloD0MICtl5G5uYVcCUhpRSlGgVS0poFkdADLnxJ/XoT3V9lChoBmgJaA9DCC7GwDqOGVDAlIaUUpRoFUtYaBZHQAzRNyo4uK51fZQoaAZoCWgPQwhDjUKSmc1wwJSGlFKUaBVLYmgWR0AM2Po3aSLZdX2UKGgGaAloD0MIvOfAcoTbWcCUhpRSlGgVS0JoFkdADRMUypJf6XV9lChoBmgJaA9DCN8YAoAjL3zAlIaUUpRoFUt4aBZHQA00/W1+iJx1fZQoaAZoCWgPQwhn1edqK8NdwJSGlFKUaBVLUGgWR0ANWGucMEzPdX2UKGgGaAloD0MIDcFxGTdNVsCUhpRSlGgVS0doFkdADZh5xBE8aHV9lChoBmgJaA9DCDPhl/r5R2/AlIaUUpRoFUtdaBZHQA2eCK77Kq51fZQoaAZoCWgPQwi78IPzqX1zwJSGlFKUaBVLfWgWR0AN25J9RaX8dX2UKGgGaAloD0MIrd7hdmhgZ8CUhpRSlGgVS2NoFkdADd8+iaiKznV9lChoBmgJaA9DCAzKNJpc2nHAlIaUUpRoFUtHaBZHQA3m/WUbDMx1fZQoaAZoCWgPQwhsJAnClTFgwJSGlFKUaBVLVmgWR0AN7CHh0hePdX2UKGgGaAloD0MIkbQbfYyReMCUhpRSlGgVS2poFkdADfQwblzU7XV9lChoBmgJaA9DCOi8xi5R0mzAlIaUUpRoFUtfaBZHQA4d5Qgs9Sx1fZQoaAZoCWgPQwjgufdwyfdXwJSGlFKUaBVLP2gWR0AOMxwhnrY5dX2UKGgGaAloD0MIx2ZHqu+4UcCUhpRSlGgVS09oFkdADmm3OObRW3V9lChoBmgJaA9DCDXSUnk7VG/AlIaUUpRoFUtKaBZHQA7HP3SKFZh1fZQoaAZoCWgPQwjFkQcii4dxwJSGlFKUaBVLX2gWR0AO1QO4G2TgdX2UKGgGaAloD0MI5j3ONOFqZMCUhpRSlGgVS3BoFkdADw7Wd3B55nV9lChoBmgJaA9DCHPzjeie7VbAlIaUUpRoFUt8aBZHQA8n/Lkjopx1fZQoaAZoCWgPQwjlYDYBhrtdwJSGlFKUaBVLQmgWR0APV1loUSIydX2UKGgGaAloD0MIj/0sliLpV8CUhpRSlGgVS0loFkdAD6vEjxCpm3V9lChoBmgJaA9DCJRrCmR2I3XAlIaUUpRoFUthaBZHQA+v/aQFLWZ1fZQoaAZoCWgPQwiXcr7Y+69jwJSGlFKUaBVLV2gWR0APw91U2kzodX2UKGgGaAloD0MIChSxiOHaZ8CUhpRSlGgVS3FoFkdAD8rRSgoPTXV9lChoBmgJaA9DCFz/rs+cuVrAlIaUUpRoFUtkaBZHQA/JHiFTNt91fZQoaAZoCWgPQwhQG9XpwF9iwJSGlFKUaBVLTGgWR0AQCagElme2dX2UKGgGaAloD0MIVgxXB8DZd8CUhpRSlGgVS2loFkdAEBGXokiUxHV9lChoBmgJaA9DCEfKFkm7bl3AlIaUUpRoFUtsaBZHQBAZQ53kgfV1fZQoaAZoCWgPQwg+WpwxTNJgwJSGlFKUaBVLQGgWR0AQGsV+I/JOdX2UKGgGaAloD0MILJrOToaJcsCUhpRSlGgVS15oFkdAEB93KSxJNHV9lChoBmgJaA9DCHEC02mdXnDAlIaUUpRoFUt+aBZHQBBRradtl7N1fZQoaAZoCWgPQwjmCBnIM55twJSGlFKUaBVLRmgWR0AQcriEQGwBdX2UKGgGaAloD0MIS1rxDYUrWMCUhpRSlGgVS0NoFkdAEJc0Ltu1nnV9lChoBmgJaA9DCKT9D7BWhFDAlIaUUpRoFUtFaBZHQBCrxd6cAip1fZQoaAZoCWgPQwiBsilXeO1awJSGlFKUaBVLS2gWR0AQu97F85S4dX2UKGgGaAloD0MIppwv9l6se8CUhpRSlGgVS3NoFkdAENWP91loUXV9lChoBmgJaA9DCP63kh2bsnjAlIaUUpRoFUt0aBZHQBDmcBltj1B1fZQoaAZoCWgPQwhDO6dZoK9owJSGlFKUaBVLRmgWR0AQ6kdmxt52dX2UKGgGaAloD0MIexLYnIP+WcCUhpRSlGgVS1poFkdAEScinpB5X3V9lChoBmgJaA9DCFb18juN8XzAlIaUUpRoFUtxaBZHQBEpXlr/Khd1fZQoaAZoCWgPQwgtCOV9nHZ6wJSGlFKUaBVLYmgWR0ARMHAymALBdX2UKGgGaAloD0MIc/T4vc0hc8CUhpRSlGgVS2FoFkdAETab4Ju2qnV9lChoBmgJaA9DCC7FVWWfMXbAlIaUUpRoFUuhaBZHQBFGl2vB7/p1fZQoaAZoCWgPQwgSZ0XUxF1lwJSGlFKUaBVLZ2gWR0ARVoBaLXMAdX2UKGgGaAloD0MICty6m6dKX8CUhpRSlGgVS1FoFkdAEW6/IsAeaXV9lChoBmgJaA9DCE2giEUMYGrAlIaUUpRoFUuFaBZHQBFz7yhBZ6l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 16, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbc1567820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbc15678b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbc1567940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbc15679d0>", "_build": "<function ActorCriticPolicy._build at 0x7fdbc1567a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fdbc1567af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbc1567b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdbc1567c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbc1567ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbc1567d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbc1567dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdbc1562780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZQoS0BLIGV1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 64, {"pi": [64, 32], "vf": [64, 32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 327680, "_total_timesteps": 320000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651737880.4975297, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADOU+TwfF/86Dg2SPnf/lL4ao0M8HdAfPgAAAAAAAAAANm1pvt3rcj97mN6+zcIrv+7+qL6rF2++AAAAAAAAAAC2ovg+HXRfPnRXBr1PDh6/z8H4PgYhu7sAAAAAAAAAAPO6mz2PSim6rdbhuzcdr7xAXhu7pVOZvQAAAAAAAIA/wISiPa5X5Dki2JI8PzC1PKuTgzsUfp49AACAPwAAgD8axSS+UgbzPo3u5710W6W+PYDQvMzQNr4AAAAAAAAAAF3ZzT7q/li9QCzpO/DxKb0npJE85xoQvQAAAAAAAAAATco7vQrxCTzdAyo+5Fk9vCkxRr0aZkE+AAAAAAAAAADzuxm+OWqsP6zjor4Amai+PQhPvr+wpb0AAAAAAAAAADNRhby4Gu06wtvjO8lLzbxzbzE8ZYS/PQAAAAAAAAAApvPIPRz7WbzLaG49UjE3vrRdjryrAMC+AACAPwAAgD9mCM8914cvOpXEVDy2LcW8j/IYPA5jrr0AAAAAAACAPxr3Fr1SH/482iwVPjaoub4i34M9wIpNPgAAAAAAAAAAM3MfOmiPjz9b77M8cpQHv0GXu7oIrRw9AAAAAAAAAACztvI9H1ONOlypKD1pTgw9GcrLuPpY67wAAAAAAAAAAFuTDL9Hvhq+NRLrvGE82T1sfII+wkhbvgAAgD8AAIA/gLgGPqQKAbsCqhi8vdPRPGAXnrykX7M9AACAPwAAgD/zDri+EWNJve8dILtrBxM8UYISPiZFMT4AAIA/AAAAAPBX0T7Hjuq92isrP4Su8r1uTwC/rHosPgAAAAAAAAAA81nBPUhDnroqvi691buHvKaACbpmPG29AACAPwAAgD/tLAA+e1DzO2ZcZryHtq+8Yr0PPQjr/DsAAAAAAAAAAJqkqz1IMaI5GeCZvLxA/Lrr7xy8Qx/eOwAAgD8AAAAAmhnJPFL4urmW28g8BMLvOjGaLrtbdNG7AACAPwAAgD8NAMg9cSVuOnOGqjzftiQ8qiDDO+7iDT0AAAAAAAAAAHMjQD+6+QC+hJqePbFFvzyWjPk9+JD7PQAAAAAAAAAA1qrbPuDt2L2lzuw+HGKWvJeTrr0k1L8+AACAPwAAgD+aHbM70RcAPx4jlzrQHiW/yJC3PKoYHL4AAAAAAAAAAJp3ZLzgmK8/QsW4vbDyfb7oR+q8IXe2vQAAAAAAAAAAM6L/PAVZrz+T8d0+kJyZvjyswbxGoAS9AAAAAAAAAABm+3A+e1fgO0rBEL1gOKU8O947PU0bij0AAAAAAAAAANrFnT2ksBE4CiR8vBsPOb0ALSU6P4UjPgAAgD8AAAAAZtniPcO5ErrLEOC6kadltd/LV7rg9QE6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITKd1G9R2McCUhpRSlIwBbJRLV4wBdJRHQGoUp1aGHpN1fZQoaAZoCWgPQwgH6pRHN8L4P5SGlFKUaBVN6ANoFkdAahcfvnbItHV9lChoBmgJaA9DCF8mipC6W0TAlIaUUpRoFUtkaBZHQGob4REnb7F1fZQoaAZoCWgPQwjs+ZrlstU1QJSGlFKUaBVLcGgWR0BqH1jEvTPTdX2UKGgGaAloD0MI1PNuLChtVsCUhpRSlGgVS2poFkdAaiEsBhhH9XV9lChoBmgJaA9DCNofKLftN09AlIaUUpRoFU3oA2gWR0BqIs25xzaLdX2UKGgGaAloD0MIUiY1tAGCSECUhpRSlGgVS5ZoFkdAaiUep4rz5HV9lChoBmgJaA9DCIpW7gVmx0HAlIaUUpRoFUt1aBZHQGonV7IDHOt1fZQoaAZoCWgPQwgvUb01sP09wJSGlFKUaBVLeWgWR0BqKO4uscQzdX2UKGgGaAloD0MImdNlMbF3UMCUhpRSlGgVS25oFkdAaip1yNn5BXV9lChoBmgJaA9DCIv6JHfYpBlAlIaUUpRoFUuUaBZHQGoyZof0Vah1fZQoaAZoCWgPQwjQfTmzXSdHwJSGlFKUaBVLh2gWR0BqNTApKBd2dX2UKGgGaAloD0MI0qbqHtl4OMCUhpRSlGgVS3JoFkdAajU93bEgn3V9lChoBmgJaA9DCLdfPlkxXB0/lIaUUpRoFUt1aBZHQGo3ZvUBnzx1fZQoaAZoCWgPQwhdF35wPvNCwJSGlFKUaBVLY2gWR0BqPMOby6MBdX2UKGgGaAloD0MIdEAS9u0WTkCUhpRSlGgVTegDaBZHQGxtRjSXt0F1fZQoaAZoCWgPQwjRWWYRitRZwJSGlFKUaBVNpQFoFkdAbG4uGKyfMHV9lChoBmgJaA9DCHHMsieBGThAlIaUUpRoFUuraBZHQGxuU6PsAvN1fZQoaAZoCWgPQwjMQ6Z8CCrrP5SGlFKUaBVLomgWR0Bsd5suWa+fdX2UKGgGaAloD0MI63O1FfsDUMCUhpRSlGgVS2ZoFkdAbHrch1Tzd3V9lChoBmgJaA9DCAvrxrsjExXAlIaUUpRoFUuQaBZHQGx8QPiDM/11fZQoaAZoCWgPQwgzFk1nJ2slwJSGlFKUaBVLWGgWR0Bsf3FNtZV5dX2UKGgGaAloD0MIokYhyaxOOkCUhpRSlGgVS2poFkdAbIcBYmsvI3V9lChoBmgJaA9DCGtj7ISXKCDAlIaUUpRoFUuJaBZHQGyIdo371qZ1fZQoaAZoCWgPQwiXHk31ZP6BP5SGlFKUaBVLfWgWR0BsjeqFRHf/dX2UKGgGaAloD0MIo1cDlIboSMCUhpRSlGgVS3RoFkdAbJYq4pc5bXV9lChoBmgJaA9DCIwtBDkogTfAlIaUUpRoFUtUaBZHQGyZG8/Uvwp1fZQoaAZoCWgPQwjEWnwKgAE+QJSGlFKUaBVLlmgWR0BsnkCLdepodX2UKGgGaAloD0MIghq+hXVHN8CUhpRSlGgVS5FoFkdAbKTUONHYpXV9lChoBmgJaA9DCINOCB10XT1AlIaUUpRoFUuhaBZHQGysAxrSE151fZQoaAZoCWgPQwhlVYSbjDo9QJSGlFKUaBVLp2gWR0BsrRwsGxD9dX2UKGgGaAloD0MI8BXdek3vC8CUhpRSlGgVS3loFkdAbK20jTrmhnV9lChoBmgJaA9DCP5F0JhJdC1AlIaUUpRoFUuHaBZHQGyymwqy4Wl1fZQoaAZoCWgPQwicMGE0K2s4QJSGlFKUaBVLZ2gWR0BssrWI42jxdX2UKGgGaAloD0MIM1LvqZzWRUCUhpRSlGgVS3FoFkdAbLRSMtK7I3V9lChoBmgJaA9DCIXsvI3NQjVAlIaUUpRoFU3oA2gWR0BsvDn3cpLFdX2UKGgGaAloD0MIoYFYNnMIIsCUhpRSlGgVS5ZoFkdAbLyz7di2D3V9lChoBmgJaA9DCJ28yAT8IEbAlIaUUpRoFUt0aBZHQGy/YIKMNtt1fZQoaAZoCWgPQwiPN/ktOllCQJSGlFKUaBVLd2gWR0Bsyw6+36RAdX2UKGgGaAloD0MI6EoEqn+qQMCUhpRSlGgVS15oFkdAbM02hIvrW3V9lChoBmgJaA9DCPT8aaM6hSvAlIaUUpRoFUuHaBZHQGzYpzLfUF11fZQoaAZoCWgPQwjr/Ntlv64hwJSGlFKUaBVLoGgWR0Bs4b9CNS62dX2UKGgGaAloD0MI1SMNbmsLv7+UhpRSlGgVS4loFkdAbOOm7aqS5nV9lChoBmgJaA9DCDMyyF2EaQrAlIaUUpRoFUtjaBZHQGzmFRHf/FR1fZQoaAZoCWgPQwg4Ef3a+o09QJSGlFKUaBVLaGgWR0Bs8U/GEPDpdX2UKGgGaAloD0MIU+xoHOorMkCUhpRSlGgVS3hoFkdAbPm+GGmDUXV9lChoBmgJaA9DCLB0PjxLnDrAlIaUUpRoFUtkaBZHQGz7hQm/nGN1fZQoaAZoCWgPQwgHQNzVqwgpwJSGlFKUaBVN6ANoFkdAbQRt/FzdUXV9lChoBmgJaA9DCGDpfHiWEDPAlIaUUpRoFUt7aBZHQG0HDgQ6IWR1fZQoaAZoCWgPQwhuh4bFqAtBQJSGlFKUaBVLmGgWR0BtCRDohY/3dX2UKGgGaAloD0MIGArYDka+QsCUhpRSlGgVS51oFkdAbQpmcvugH3V9lChoBmgJaA9DCDlHHR1X1zdAlIaUUpRoFUuFaBZHQG0N73oLXtl1fZQoaAZoCWgPQwh5O8JpwWdMwJSGlFKUaBVLYGgWR0BtFcFUyYXwdX2UKGgGaAloD0MIW5iFdk6lRMCUhpRSlGgVS1BoFkdAbRmYjSofjnV9lChoBmgJaA9DCI/k8h/SJUxAlIaUUpRoFU3oA2gWR0BtJh5E+gUUdX2UKGgGaAloD0MI7l2DvvSqO8CUhpRSlGgVS21oFkdAbUNwLmZE2HV9lChoBmgJaA9DCHglyXN9UURAlIaUUpRoFUuyaBZHQG1X8/MW43F1fZQoaAZoCWgPQwiPM03YfiIywJSGlFKUaBVLkGgWR0BtWvQ+lj3FdX2UKGgGaAloD0MIViqoqPrZOUCUhpRSlGgVS4BoFkdAbV34s3AEdXV9lChoBmgJaA9DCCJseHqluFFAlIaUUpRoFU3oA2gWR0BtZ8UypJf6dX2UKGgGaAloD0MInigJibRNI8CUhpRSlGgVS2poFkdAbXDqB3A2ynV9lChoBmgJaA9DCIXNABdkmyxAlIaUUpRoFUubaBZHQG11gCwKSgZ1fZQoaAZoCWgPQwisOxbbpKIKwJSGlFKUaBVN6ANoFkdAbXe20AtFrnV9lChoBmgJaA9DCIpZL4ZyIj9AlIaUUpRoFUuqaBZHQG1+lfzBhx51fZQoaAZoCWgPQwhAwjBgyb0sQJSGlFKUaBVLsmgWR0BtiX4IrvsrdX2UKGgGaAloD0MI1XWopiQPPkCUhpRSlGgVS79oFkdAbZvLyMDOknV9lChoBmgJaA9DCG1Wfa62qiRAlIaUUpRoFUuJaBZHQG2m0HQhOgx1fZQoaAZoCWgPQwi4rpgR3h4fwJSGlFKUaBVLc2gWR0Btsa4UeuFIdX2UKGgGaAloD0MIZsBZSpaDHUCUhpRSlGgVS3poFkdAbbQSDAaegHV9lChoBmgJaA9DCEQ1JVmHrzFAlIaUUpRoFU3oA2gWR0BtwFSl3yI6dX2UKGgGaAloD0MI6pRHN8IaIkCUhpRSlGgVS3FoFkdAbckx7AtWdXV9lChoBmgJaA9DCP0ubM1WrkFAlIaUUpRoFUuUaBZHQG3WGdI5HVh1fZQoaAZoCWgPQwjTM73EWCZCQJSGlFKUaBVLyWgWR0Bt8RjawljWdX2UKGgGaAloD0MIX3r7c9GIQMCUhpRSlGgVS2xoFkdAbgr5vcafjHV9lChoBmgJaA9DCG11OSUglhtAlIaUUpRoFUuCaBZHQG4R8iW3Sa51fZQoaAZoCWgPQwh07KAS1zlEwJSGlFKUaBVLRmgWR0BuEipHZsbedX2UKGgGaAloD0MIqUwxB0EXNsCUhpRSlGgVS4BoFkdAbiAo60Y0mHV9lChoBmgJaA9DCDuKc9TR9TVAlIaUUpRoFUutaBZHQG4tEjHGS6l1fZQoaAZoCWgPQwiKcmn8wis7QJSGlFKUaBVN6ANoFkdAbk9f2K2rn3V9lChoBmgJaA9DCEuuYvGbUhvAlIaUUpRoFU3oA2gWR0BuX8lme18cdX2UKGgGaAloD0MI9b7xtWeWlD+UhpRSlGgVS2FoFkdAbnCJoCdSVHV9lChoBmgJaA9DCGA+WTFcjS/AlIaUUpRoFUtiaBZHQG6AJlJ6IFh1fZQoaAZoCWgPQwhA3UCBdxY+QJSGlFKUaBVLn2gWR0BuiAOvt+kQdX2UKGgGaAloD0MI7QvohTuX4r+UhpRSlGgVS1NoFkdAbrL9jPOY6XV9lChoBmgJaA9DCDY+k/3zjkJAlIaUUpRoFUutaBZHQG693BP9DQZ1fZQoaAZoCWgPQwjMQ6Z8CCI2QJSGlFKUaBVLkmgWR0Buv3buc+aCdX2UKGgGaAloD0MIMgOV8e9TIMCUhpRSlGgVS7xoFkdAbsYddVvMr3V9lChoBmgJaA9DCFaalIJuDmnAlIaUUpRoFU2DA2gWR0BvFLDfm9xqdX2UKGgGaAloD0MIMGXggJamN0CUhpRSlGgVTegDaBZHQG8jkPtlZox1fZQoaAZoCWgPQwjVXG4w1BEoQJSGlFKUaBVN6ANoFkdAbyWxHoX9BXV9lChoBmgJaA9DCGDmO/iJXURAlIaUUpRoFU3oA2gWR0BvJwaJhvzfdX2UKGgGaAloD0MIGqchqvBrNkCUhpRSlGgVS2toFkdAb0KDBdld1XV9lChoBmgJaA9DCG8vaYzW60RAlIaUUpRoFU3oA2gWR0BvUBof0VafdX2UKGgGaAloD0MINbIrLSPLY8CUhpRSlGgVTa8DaBZHQG9QOKXOW0J1fZQoaAZoCWgPQwix+47hsSM9QJSGlFKUaBVLl2gWR0BvauOU+s5odX2UKGgGaAloD0MIznADPj9GSUCUhpRSlGgVTegDaBZHQG+Ix1X/5tZ1fZQoaAZoCWgPQwgX1LfM6XROQJSGlFKUaBVN6ANoFkdAb4j2aDwpfHV9lChoBmgJaA9DCJ+Sc2IPE0JAlIaUUpRoFUtsaBZHQG+agPEsJ6Z1fZQoaAZoCWgPQwiYNbHAVzQIQJSGlFKUaBVLWmgWR0BvommJm/WUdX2UKGgGaAloD0MIm5FB7iLMAECUhpRSlGgVS35oFkdAb6qhib2DhHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0dd2dc028508bdd22c97fd1fbd6093c1c3208814e60b416d8fd7717ae2c8c3e6
3
- size 173603
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2220730ec8e6ea819d15b32ea4eda7b4931535292c0beccae3bd4f1e084fd32a
3
+ size 245320
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -690.7044079489075, "std_reward": 32.48971110106599, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T16:03:55.890756"}
 
1
+ {"mean_reward": -11.884949500567746, "std_reward": 22.17668066366, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T16:09:59.728721"}
thicc-ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:274a8ddb6c648abba4cee07d6aac40461d2202cb2df2666702578dbdaaa59901
3
- size 295217
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa19dea60c5c531e27822ddf3079bb5a22684c4dd5c05db706e27eb14aa2e209
3
+ size 295948
thicc-ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1093d7c820>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1093d7c8b0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1093d7c940>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1093d7c9d0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f1093d7ca60>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f1093d7caf0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1093d7cb80>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f1093d7cc10>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1093d7cca0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1093d7cd30>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1093d7cdc0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f1093d76780>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
@@ -59,13 +59,13 @@
59
  "dtype": "int64",
60
  "_np_random": null
61
  },
62
- "n_envs": 16,
63
- "num_timesteps": 16384,
64
- "_total_timesteps": 16000,
65
  "_num_timesteps_at_start": 0,
66
  "seed": null,
67
  "action_noise": null,
68
- "start_time": 1651737802.2067938,
69
  "learning_rate": 0.0003,
70
  "tensorboard_log": null,
71
  "lr_schedule": {
@@ -74,11 +74,11 @@
74
  },
75
  "_last_obs": {
76
  ":type:": "<class 'numpy.ndarray'>",
77
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAFjD3SXLc/q/GBPsSXOb7iFwq+pOQuvQAAAAAAAAAAmrPLPK7n3jkFubu8T81YvMlM9ro+sPq8AAAAAAAAAABK89++ioebP3D2Z78mYTq/fjF/P5aD1T4AAAAAAAAAAGYVnbyw9Ps+gNzqvVz+iL8//QY+DnTcPQAAAAAAAAAAwKWzvS4Orj+4ekO/BamJvj5uBT476XU+AAAAAAAAAACaiKW8uD26P9ojBb+fV+0+FOu9PN/iDz4AAAAAAAAAAEa6mr4ZZzE/2z0Hv4Q5TL91kRQ+dJGVPgAAAAAAAAAAs6+KPUv7SD+Tw1M+L6F8v38yC79zLaS+AAAAAAAAAAAt4UM+H4iMPx0yaD8F2UC/krzavq3FCb8AAAAAAAAAADNZ7b2cULQ/awE9vzncFL5lglg+V8WrPgAAAAAAAAAAmorgPv7AMz+A5Fg//eKZv2Xmfb9OQ9e+AAAAAAAAAACz3Z89HEKuPw8RuT5GAZm+EJJGvT6QgrwAAAAAAAAAAEDL9z1WRco/t7MEP4wVhD7hX929yN3GvQAAAAAAAAAA6PGXvrw7hj+zrlK/TCf7vlUL5D7NQ7M9AAAAAAAAAACofLO+bNyeP04FWL/HK+u+KoJiPhLmNT0AAAAAAAAAAACWBDyUp7c/FezPPntMDT+sNh+8TJfMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
78
  },
79
  "_last_episode_starts": {
80
  ":type:": "<class 'numpy.ndarray'>",
81
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
82
  },
83
  "_last_original_obs": null,
84
  "_episode_num": 0,
@@ -87,20 +87,20 @@
87
  "_current_progress_remaining": -0.02400000000000002,
88
  "ep_info_buffer": {
89
  ":type:": "<class 'collections.deque'>",
90
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1A0UeCeTXcCUhpRSlIwBbJRLSowBdJRHQAYwudwvQF91fZQoaAZoCWgPQwhiZwqd125GwJSGlFKUaBVLQWgWR0AGStHQQcxTdX2UKGgGaAloD0MIU3WPbK6EWsCUhpRSlGgVS21oFkdABmTewcHW0HV9lChoBmgJaA9DCPFHUWfuu13AlIaUUpRoFUtnaBZHQAZoEB8x9G91fZQoaAZoCWgPQwjFWRE10dVXwJSGlFKUaBVLQWgWR0AGfd43WFvidX2UKGgGaAloD0MIgc8PI4SyVsCUhpRSlGgVS0VoFkdABrgH/tICl3V9lChoBmgJaA9DCNLfS+HBj2PAlIaUUpRoFUtTaBZHQAbYj0L+glF1fZQoaAZoCWgPQwgRje4gdqtpwJSGlFKUaBVLgGgWR0AHEjqv/zasdX2UKGgGaAloD0MIWVLuPoeRdsCUhpRSlGgVS1RoFkdABydf9gnc+XV9lChoBmgJaA9DCFOVtrjGKGbAlIaUUpRoFUtqaBZHQAdWdupCKJl1fZQoaAZoCWgPQwhgI0kQrtZXwJSGlFKUaBVLPWgWR0AHc2kzoEB9dX2UKGgGaAloD0MIA5mdRW9WZcCUhpRSlGgVS2poFkdAB4KyfL9uP3V9lChoBmgJaA9DCCdsPxnjiWHAlIaUUpRoFUtbaBZHQAedSMtK7I11fZQoaAZoCWgPQwhhGLDkKmBZwJSGlFKUaBVLSGgWR0AHpzHS4OMEdX2UKGgGaAloD0MITKQ0m8eAU8CUhpRSlGgVS0doFkdACBRGc4HX3HV9lChoBmgJaA9DCLMj1Xd+e2fAlIaUUpRoFUtGaBZHQAhJZntfG+91fZQoaAZoCWgPQwiG4/kMKLV0wJSGlFKUaBVLX2gWR0AIUriEQGwBdX2UKGgGaAloD0MITgzJycRaVcCUhpRSlGgVS1toFkdACFLZi/fwZ3V9lChoBmgJaA9DCG+e6pAbKmXAlIaUUpRoFUtZaBZHQAhiZ4Oc2BJ1fZQoaAZoCWgPQwiSA3Y1+TBxwJSGlFKUaBVLWGgWR0AIYLE1l5GCdX2UKGgGaAloD0MId9mvO91JZMCUhpRSlGgVS29oFkdACIdgfEGZ/nV9lChoBmgJaA9DCBaiQ+BIVFjAlIaUUpRoFUt2aBZHQAimu1WsA/91fZQoaAZoCWgPQwjaklURrrpzwJSGlFKUaBVLYGgWR0AI9VWCEpRXdX2UKGgGaAloD0MIlDKpoQ2kU8CUhpRSlGgVS0JoFkdACPSeiBXjl3V9lChoBmgJaA9DCLVrQlpjO1nAlIaUUpRoFUtPaBZHQAkUvoNd7fJ1fZQoaAZoCWgPQwjaklURbo1vwJSGlFKUaBVLS2gWR0AJSAFxGUfQdX2UKGgGaAloD0MIb0VighoVVcCUhpRSlGgVS1VoFkdACVKq4pc5bXV9lChoBmgJaA9DCD7ONGH7b1rAlIaUUpRoFUtlaBZHQAlPpyIYWLx1fZQoaAZoCWgPQwhuiVxwhuVpwJSGlFKUaBVLa2gWR0AJgrvsqrimdX2UKGgGaAloD0MIZyrEI/F2csCUhpRSlGgVS0RoFkdACcG4ZuQ6qHV9lChoBmgJaA9DCHkHeNLCMVnAlIaUUpRoFUtKaBZHQAn3cQAdXDF1fZQoaAZoCWgPQwh2VDVB1Jt2wJSGlFKUaBVLbWgWR0AJ/1pTMqz7dX2UKGgGaAloD0MILbEyGvlAOkCUhpRSlGgVS1NoFkdACiy31BdD6XV9lChoBmgJaA9DCHqobcNoh3TAlIaUUpRoFUthaBZHQAoxdyDIzWR1fZQoaAZoCWgPQwjpKAezCbJUwJSGlFKUaBVLWWgWR0AKQkgOjIq9dX2UKGgGaAloD0MI3pGx2vwcdcCUhpRSlGgVS2hoFkdACpNN8E3bVXV9lChoBmgJaA9DCKTFGcOcGWLAlIaUUpRoFUtjaBZHQAqtPxhDw6R1fZQoaAZoCWgPQwjmrE85ZoV/wJSGlFKUaBVLV2gWR0AK3fVI7NjcdX2UKGgGaAloD0MI+IxEaASvNECUhpRSlGgVS1hoFkdACuPI4lyBCnV9lChoBmgJaA9DCHxinSpf52XAlIaUUpRoFUtPaBZHQAsPA44p+c91fZQoaAZoCWgPQwjlub4PBz56wJSGlFKUaBVLcGgWR0ALGgOBlMAWdX2UKGgGaAloD0MIyAp+G2K+XMCUhpRSlGgVS11oFkdACyMiKR+z+nV9lChoBmgJaA9DCPQWD+85gDLAlIaUUpRoFUtJaBZHQAudOymhufp1fZQoaAZoCWgPQwg5tp4hHI57wJSGlFKUaBVLaGgWR0ALmzQeFL39dX2UKGgGaAloD0MIdLaA0HrOWMCUhpRSlGgVS1VoFkdAC6YfnwG4Z3V9lChoBmgJaA9DCE8g7BQrQHTAlIaUUpRoFUtgaBZHQAulr2xptaZ1fZQoaAZoCWgPQwgziXrBp+1ZwJSGlFKUaBVLT2gWR0ALuf029+PSdX2UKGgGaAloD0MIByXMtP2JV8CUhpRSlGgVS1VoFkdADA/yoXKr73V9lChoBmgJaA9DCNnRONTvHV3AlIaUUpRoFUtRaBZHQAwOJtSAH3V1fZQoaAZoCWgPQwgXt9EA3uxZwJSGlFKUaBVLfmgWR0AMFDWsijcmdX2UKGgGaAloD0MItDo5Q3FUXsCUhpRSlGgVS2JoFkdADFwF1SwW33V9lChoBmgJaA9DCBubHam+8FzAlIaUUpRoFUtJaBZHQAyByjpLVWl1fZQoaAZoCWgPQwiiYTHq2sJowJSGlFKUaBVLSWgWR0AMqu+yquKXdX2UKGgGaAloD0MICtl5G5uYVcCUhpRSlGgVS0poFkdADLnxJ/XoT3V9lChoBmgJaA9DCC7GwDqOGVDAlIaUUpRoFUtYaBZHQAzRNyo4uK51fZQoaAZoCWgPQwhDjUKSmc1wwJSGlFKUaBVLYmgWR0AM2Po3aSLZdX2UKGgGaAloD0MIvOfAcoTbWcCUhpRSlGgVS0JoFkdADRMUypJf6XV9lChoBmgJaA9DCN8YAoAjL3zAlIaUUpRoFUt4aBZHQA00/W1+iJx1fZQoaAZoCWgPQwhn1edqK8NdwJSGlFKUaBVLUGgWR0ANWGucMEzPdX2UKGgGaAloD0MIDcFxGTdNVsCUhpRSlGgVS0doFkdADZh5xBE8aHV9lChoBmgJaA9DCDPhl/r5R2/AlIaUUpRoFUtdaBZHQA2eCK77Kq51fZQoaAZoCWgPQwi78IPzqX1zwJSGlFKUaBVLfWgWR0AN25J9RaX8dX2UKGgGaAloD0MIrd7hdmhgZ8CUhpRSlGgVS2NoFkdADd8+iaiKznV9lChoBmgJaA9DCAzKNJpc2nHAlIaUUpRoFUtHaBZHQA3m/WUbDMx1fZQoaAZoCWgPQwhsJAnClTFgwJSGlFKUaBVLVmgWR0AN7CHh0hePdX2UKGgGaAloD0MIkbQbfYyReMCUhpRSlGgVS2poFkdADfQwblzU7XV9lChoBmgJaA9DCOi8xi5R0mzAlIaUUpRoFUtfaBZHQA4d5Qgs9Sx1fZQoaAZoCWgPQwjgufdwyfdXwJSGlFKUaBVLP2gWR0AOMxwhnrY5dX2UKGgGaAloD0MIx2ZHqu+4UcCUhpRSlGgVS09oFkdADmm3OObRW3V9lChoBmgJaA9DCDXSUnk7VG/AlIaUUpRoFUtKaBZHQA7HP3SKFZh1fZQoaAZoCWgPQwjFkQcii4dxwJSGlFKUaBVLX2gWR0AO1QO4G2TgdX2UKGgGaAloD0MI5j3ONOFqZMCUhpRSlGgVS3BoFkdADw7Wd3B55nV9lChoBmgJaA9DCHPzjeie7VbAlIaUUpRoFUt8aBZHQA8n/Lkjopx1fZQoaAZoCWgPQwjlYDYBhrtdwJSGlFKUaBVLQmgWR0APV1loUSIydX2UKGgGaAloD0MIj/0sliLpV8CUhpRSlGgVS0loFkdAD6vEjxCpm3V9lChoBmgJaA9DCJRrCmR2I3XAlIaUUpRoFUthaBZHQA+v/aQFLWZ1fZQoaAZoCWgPQwiXcr7Y+69jwJSGlFKUaBVLV2gWR0APw91U2kzodX2UKGgGaAloD0MIChSxiOHaZ8CUhpRSlGgVS3FoFkdAD8rRSgoPTXV9lChoBmgJaA9DCFz/rs+cuVrAlIaUUpRoFUtkaBZHQA/JHiFTNt91fZQoaAZoCWgPQwhQG9XpwF9iwJSGlFKUaBVLTGgWR0AQCagElme2dX2UKGgGaAloD0MIVgxXB8DZd8CUhpRSlGgVS2loFkdAEBGXokiUxHV9lChoBmgJaA9DCEfKFkm7bl3AlIaUUpRoFUtsaBZHQBAZQ53kgfV1fZQoaAZoCWgPQwg+WpwxTNJgwJSGlFKUaBVLQGgWR0AQGsV+I/JOdX2UKGgGaAloD0MILJrOToaJcsCUhpRSlGgVS15oFkdAEB93KSxJNHV9lChoBmgJaA9DCHEC02mdXnDAlIaUUpRoFUt+aBZHQBBRradtl7N1fZQoaAZoCWgPQwjmCBnIM55twJSGlFKUaBVLRmgWR0AQcriEQGwBdX2UKGgGaAloD0MIS1rxDYUrWMCUhpRSlGgVS0NoFkdAEJc0Ltu1nnV9lChoBmgJaA9DCKT9D7BWhFDAlIaUUpRoFUtFaBZHQBCrxd6cAip1fZQoaAZoCWgPQwiBsilXeO1awJSGlFKUaBVLS2gWR0AQu97F85S4dX2UKGgGaAloD0MIppwv9l6se8CUhpRSlGgVS3NoFkdAENWP91loUXV9lChoBmgJaA9DCP63kh2bsnjAlIaUUpRoFUt0aBZHQBDmcBltj1B1fZQoaAZoCWgPQwhDO6dZoK9owJSGlFKUaBVLRmgWR0AQ6kdmxt52dX2UKGgGaAloD0MIexLYnIP+WcCUhpRSlGgVS1poFkdAEScinpB5X3V9lChoBmgJaA9DCFb18juN8XzAlIaUUpRoFUtxaBZHQBEpXlr/Khd1fZQoaAZoCWgPQwgtCOV9nHZ6wJSGlFKUaBVLYmgWR0ARMHAymALBdX2UKGgGaAloD0MIc/T4vc0hc8CUhpRSlGgVS2FoFkdAETab4Ju2qnV9lChoBmgJaA9DCC7FVWWfMXbAlIaUUpRoFUuhaBZHQBFGl2vB7/p1fZQoaAZoCWgPQwgSZ0XUxF1lwJSGlFKUaBVLZ2gWR0ARVoBaLXMAdX2UKGgGaAloD0MICty6m6dKX8CUhpRSlGgVS1FoFkdAEW6/IsAeaXV9lChoBmgJaA9DCE2giEUMYGrAlIaUUpRoFUuFaBZHQBFz7yhBZ6l1ZS4="
91
  },
92
  "ep_success_buffer": {
93
  ":type:": "<class 'collections.deque'>",
94
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
  },
96
- "_n_updates": 4,
97
  "n_steps": 1024,
98
  "gamma": 0.999,
99
  "gae_lambda": 0.98,
100
  "ent_coef": 0.01,
101
  "vf_coef": 0.5,
102
  "max_grad_norm": 0.5,
103
- "batch_size": 16,
104
  "n_epochs": 4,
105
  "clip_range": {
106
  ":type:": "<class 'function'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbc1567820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbc15678b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbc1567940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbc15679d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdbc1567a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdbc1567af0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbc1567b80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdbc1567c10>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbc1567ca0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbc1567d30>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbc1567dc0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fdbc1562780>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
 
59
  "dtype": "int64",
60
  "_np_random": null
61
  },
62
+ "n_envs": 32,
63
+ "num_timesteps": 327680,
64
+ "_total_timesteps": 320000,
65
  "_num_timesteps_at_start": 0,
66
  "seed": null,
67
  "action_noise": null,
68
+ "start_time": 1651737880.4975297,
69
  "learning_rate": 0.0003,
70
  "tensorboard_log": null,
71
  "lr_schedule": {
 
74
  },
75
  "_last_obs": {
76
  ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADOU+TwfF/86Dg2SPnf/lL4ao0M8HdAfPgAAAAAAAAAANm1pvt3rcj97mN6+zcIrv+7+qL6rF2++AAAAAAAAAAC2ovg+HXRfPnRXBr1PDh6/z8H4PgYhu7sAAAAAAAAAAPO6mz2PSim6rdbhuzcdr7xAXhu7pVOZvQAAAAAAAIA/wISiPa5X5Dki2JI8PzC1PKuTgzsUfp49AACAPwAAgD8axSS+UgbzPo3u5710W6W+PYDQvMzQNr4AAAAAAAAAAF3ZzT7q/li9QCzpO/DxKb0npJE85xoQvQAAAAAAAAAATco7vQrxCTzdAyo+5Fk9vCkxRr0aZkE+AAAAAAAAAADzuxm+OWqsP6zjor4Amai+PQhPvr+wpb0AAAAAAAAAADNRhby4Gu06wtvjO8lLzbxzbzE8ZYS/PQAAAAAAAAAApvPIPRz7WbzLaG49UjE3vrRdjryrAMC+AACAPwAAgD9mCM8914cvOpXEVDy2LcW8j/IYPA5jrr0AAAAAAACAPxr3Fr1SH/482iwVPjaoub4i34M9wIpNPgAAAAAAAAAAM3MfOmiPjz9b77M8cpQHv0GXu7oIrRw9AAAAAAAAAACztvI9H1ONOlypKD1pTgw9GcrLuPpY67wAAAAAAAAAAFuTDL9Hvhq+NRLrvGE82T1sfII+wkhbvgAAgD8AAIA/gLgGPqQKAbsCqhi8vdPRPGAXnrykX7M9AACAPwAAgD/zDri+EWNJve8dILtrBxM8UYISPiZFMT4AAIA/AAAAAPBX0T7Hjuq92isrP4Su8r1uTwC/rHosPgAAAAAAAAAA81nBPUhDnroqvi691buHvKaACbpmPG29AACAPwAAgD/tLAA+e1DzO2ZcZryHtq+8Yr0PPQjr/DsAAAAAAAAAAJqkqz1IMaI5GeCZvLxA/Lrr7xy8Qx/eOwAAgD8AAAAAmhnJPFL4urmW28g8BMLvOjGaLrtbdNG7AACAPwAAgD8NAMg9cSVuOnOGqjzftiQ8qiDDO+7iDT0AAAAAAAAAAHMjQD+6+QC+hJqePbFFvzyWjPk9+JD7PQAAAAAAAAAA1qrbPuDt2L2lzuw+HGKWvJeTrr0k1L8+AACAPwAAgD+aHbM70RcAPx4jlzrQHiW/yJC3PKoYHL4AAAAAAAAAAJp3ZLzgmK8/QsW4vbDyfb7oR+q8IXe2vQAAAAAAAAAAM6L/PAVZrz+T8d0+kJyZvjyswbxGoAS9AAAAAAAAAABm+3A+e1fgO0rBEL1gOKU8O947PU0bij0AAAAAAAAAANrFnT2ksBE4CiR8vBsPOb0ALSU6P4UjPgAAgD8AAAAAZtniPcO5ErrLEOC6kadltd/LV7rg9QE6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
78
  },
79
  "_last_episode_starts": {
80
  ":type:": "<class 'numpy.ndarray'>",
81
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
82
  },
83
  "_last_original_obs": null,
84
  "_episode_num": 0,
 
87
  "_current_progress_remaining": -0.02400000000000002,
88
  "ep_info_buffer": {
89
  ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITKd1G9R2McCUhpRSlIwBbJRLV4wBdJRHQGoUp1aGHpN1fZQoaAZoCWgPQwgH6pRHN8L4P5SGlFKUaBVN6ANoFkdAahcfvnbItHV9lChoBmgJaA9DCF8mipC6W0TAlIaUUpRoFUtkaBZHQGob4REnb7F1fZQoaAZoCWgPQwjs+ZrlstU1QJSGlFKUaBVLcGgWR0BqH1jEvTPTdX2UKGgGaAloD0MI1PNuLChtVsCUhpRSlGgVS2poFkdAaiEsBhhH9XV9lChoBmgJaA9DCNofKLftN09AlIaUUpRoFU3oA2gWR0BqIs25xzaLdX2UKGgGaAloD0MIUiY1tAGCSECUhpRSlGgVS5ZoFkdAaiUep4rz5HV9lChoBmgJaA9DCIpW7gVmx0HAlIaUUpRoFUt1aBZHQGonV7IDHOt1fZQoaAZoCWgPQwgvUb01sP09wJSGlFKUaBVLeWgWR0BqKO4uscQzdX2UKGgGaAloD0MImdNlMbF3UMCUhpRSlGgVS25oFkdAaip1yNn5BXV9lChoBmgJaA9DCIv6JHfYpBlAlIaUUpRoFUuUaBZHQGoyZof0Vah1fZQoaAZoCWgPQwjQfTmzXSdHwJSGlFKUaBVLh2gWR0BqNTApKBd2dX2UKGgGaAloD0MI0qbqHtl4OMCUhpRSlGgVS3JoFkdAajU93bEgn3V9lChoBmgJaA9DCLdfPlkxXB0/lIaUUpRoFUt1aBZHQGo3ZvUBnzx1fZQoaAZoCWgPQwhdF35wPvNCwJSGlFKUaBVLY2gWR0BqPMOby6MBdX2UKGgGaAloD0MIdEAS9u0WTkCUhpRSlGgVTegDaBZHQGxtRjSXt0F1fZQoaAZoCWgPQwjRWWYRitRZwJSGlFKUaBVNpQFoFkdAbG4uGKyfMHV9lChoBmgJaA9DCHHMsieBGThAlIaUUpRoFUuraBZHQGxuU6PsAvN1fZQoaAZoCWgPQwjMQ6Z8CCrrP5SGlFKUaBVLomgWR0Bsd5suWa+fdX2UKGgGaAloD0MI63O1FfsDUMCUhpRSlGgVS2ZoFkdAbHrch1Tzd3V9lChoBmgJaA9DCAvrxrsjExXAlIaUUpRoFUuQaBZHQGx8QPiDM/11fZQoaAZoCWgPQwgzFk1nJ2slwJSGlFKUaBVLWGgWR0Bsf3FNtZV5dX2UKGgGaAloD0MIokYhyaxOOkCUhpRSlGgVS2poFkdAbIcBYmsvI3V9lChoBmgJaA9DCGtj7ISXKCDAlIaUUpRoFUuJaBZHQGyIdo371qZ1fZQoaAZoCWgPQwiXHk31ZP6BP5SGlFKUaBVLfWgWR0BsjeqFRHf/dX2UKGgGaAloD0MIo1cDlIboSMCUhpRSlGgVS3RoFkdAbJYq4pc5bXV9lChoBmgJaA9DCIwtBDkogTfAlIaUUpRoFUtUaBZHQGyZG8/Uvwp1fZQoaAZoCWgPQwjEWnwKgAE+QJSGlFKUaBVLlmgWR0BsnkCLdepodX2UKGgGaAloD0MIghq+hXVHN8CUhpRSlGgVS5FoFkdAbKTUONHYpXV9lChoBmgJaA9DCINOCB10XT1AlIaUUpRoFUuhaBZHQGysAxrSE151fZQoaAZoCWgPQwhlVYSbjDo9QJSGlFKUaBVLp2gWR0BsrRwsGxD9dX2UKGgGaAloD0MI8BXdek3vC8CUhpRSlGgVS3loFkdAbK20jTrmhnV9lChoBmgJaA9DCP5F0JhJdC1AlIaUUpRoFUuHaBZHQGyymwqy4Wl1fZQoaAZoCWgPQwicMGE0K2s4QJSGlFKUaBVLZ2gWR0BssrWI42jxdX2UKGgGaAloD0MIM1LvqZzWRUCUhpRSlGgVS3FoFkdAbLRSMtK7I3V9lChoBmgJaA9DCIXsvI3NQjVAlIaUUpRoFU3oA2gWR0BsvDn3cpLFdX2UKGgGaAloD0MIoYFYNnMIIsCUhpRSlGgVS5ZoFkdAbLyz7di2D3V9lChoBmgJaA9DCJ28yAT8IEbAlIaUUpRoFUt0aBZHQGy/YIKMNtt1fZQoaAZoCWgPQwiPN/ktOllCQJSGlFKUaBVLd2gWR0Bsyw6+36RAdX2UKGgGaAloD0MI6EoEqn+qQMCUhpRSlGgVS15oFkdAbM02hIvrW3V9lChoBmgJaA9DCPT8aaM6hSvAlIaUUpRoFUuHaBZHQGzYpzLfUF11fZQoaAZoCWgPQwjr/Ntlv64hwJSGlFKUaBVLoGgWR0Bs4b9CNS62dX2UKGgGaAloD0MI1SMNbmsLv7+UhpRSlGgVS4loFkdAbOOm7aqS5nV9lChoBmgJaA9DCDMyyF2EaQrAlIaUUpRoFUtjaBZHQGzmFRHf/FR1fZQoaAZoCWgPQwg4Ef3a+o09QJSGlFKUaBVLaGgWR0Bs8U/GEPDpdX2UKGgGaAloD0MIU+xoHOorMkCUhpRSlGgVS3hoFkdAbPm+GGmDUXV9lChoBmgJaA9DCLB0PjxLnDrAlIaUUpRoFUtkaBZHQGz7hQm/nGN1fZQoaAZoCWgPQwgHQNzVqwgpwJSGlFKUaBVN6ANoFkdAbQRt/FzdUXV9lChoBmgJaA9DCGDpfHiWEDPAlIaUUpRoFUt7aBZHQG0HDgQ6IWR1fZQoaAZoCWgPQwhuh4bFqAtBQJSGlFKUaBVLmGgWR0BtCRDohY/3dX2UKGgGaAloD0MIGArYDka+QsCUhpRSlGgVS51oFkdAbQpmcvugH3V9lChoBmgJaA9DCDlHHR1X1zdAlIaUUpRoFUuFaBZHQG0N73oLXtl1fZQoaAZoCWgPQwh5O8JpwWdMwJSGlFKUaBVLYGgWR0BtFcFUyYXwdX2UKGgGaAloD0MIW5iFdk6lRMCUhpRSlGgVS1BoFkdAbRmYjSofjnV9lChoBmgJaA9DCI/k8h/SJUxAlIaUUpRoFU3oA2gWR0BtJh5E+gUUdX2UKGgGaAloD0MI7l2DvvSqO8CUhpRSlGgVS21oFkdAbUNwLmZE2HV9lChoBmgJaA9DCHglyXN9UURAlIaUUpRoFUuyaBZHQG1X8/MW43F1fZQoaAZoCWgPQwiPM03YfiIywJSGlFKUaBVLkGgWR0BtWvQ+lj3FdX2UKGgGaAloD0MIViqoqPrZOUCUhpRSlGgVS4BoFkdAbV34s3AEdXV9lChoBmgJaA9DCCJseHqluFFAlIaUUpRoFU3oA2gWR0BtZ8UypJf6dX2UKGgGaAloD0MInigJibRNI8CUhpRSlGgVS2poFkdAbXDqB3A2ynV9lChoBmgJaA9DCIXNABdkmyxAlIaUUpRoFUubaBZHQG11gCwKSgZ1fZQoaAZoCWgPQwisOxbbpKIKwJSGlFKUaBVN6ANoFkdAbXe20AtFrnV9lChoBmgJaA9DCIpZL4ZyIj9AlIaUUpRoFUuqaBZHQG1+lfzBhx51fZQoaAZoCWgPQwhAwjBgyb0sQJSGlFKUaBVLsmgWR0BtiX4IrvsrdX2UKGgGaAloD0MI1XWopiQPPkCUhpRSlGgVS79oFkdAbZvLyMDOknV9lChoBmgJaA9DCG1Wfa62qiRAlIaUUpRoFUuJaBZHQG2m0HQhOgx1fZQoaAZoCWgPQwi4rpgR3h4fwJSGlFKUaBVLc2gWR0Btsa4UeuFIdX2UKGgGaAloD0MIZsBZSpaDHUCUhpRSlGgVS3poFkdAbbQSDAaegHV9lChoBmgJaA9DCEQ1JVmHrzFAlIaUUpRoFU3oA2gWR0BtwFSl3yI6dX2UKGgGaAloD0MI6pRHN8IaIkCUhpRSlGgVS3FoFkdAbckx7AtWdXV9lChoBmgJaA9DCP0ubM1WrkFAlIaUUpRoFUuUaBZHQG3WGdI5HVh1fZQoaAZoCWgPQwjTM73EWCZCQJSGlFKUaBVLyWgWR0Bt8RjawljWdX2UKGgGaAloD0MIX3r7c9GIQMCUhpRSlGgVS2xoFkdAbgr5vcafjHV9lChoBmgJaA9DCG11OSUglhtAlIaUUpRoFUuCaBZHQG4R8iW3Sa51fZQoaAZoCWgPQwh07KAS1zlEwJSGlFKUaBVLRmgWR0BuEipHZsbedX2UKGgGaAloD0MIqUwxB0EXNsCUhpRSlGgVS4BoFkdAbiAo60Y0mHV9lChoBmgJaA9DCDuKc9TR9TVAlIaUUpRoFUutaBZHQG4tEjHGS6l1fZQoaAZoCWgPQwiKcmn8wis7QJSGlFKUaBVN6ANoFkdAbk9f2K2rn3V9lChoBmgJaA9DCEuuYvGbUhvAlIaUUpRoFU3oA2gWR0BuX8lme18cdX2UKGgGaAloD0MI9b7xtWeWlD+UhpRSlGgVS2FoFkdAbnCJoCdSVHV9lChoBmgJaA9DCGA+WTFcjS/AlIaUUpRoFUtiaBZHQG6AJlJ6IFh1fZQoaAZoCWgPQwhA3UCBdxY+QJSGlFKUaBVLn2gWR0BuiAOvt+kQdX2UKGgGaAloD0MI7QvohTuX4r+UhpRSlGgVS1NoFkdAbrL9jPOY6XV9lChoBmgJaA9DCDY+k/3zjkJAlIaUUpRoFUutaBZHQG693BP9DQZ1fZQoaAZoCWgPQwjMQ6Z8CCI2QJSGlFKUaBVLkmgWR0Buv3buc+aCdX2UKGgGaAloD0MIMgOV8e9TIMCUhpRSlGgVS7xoFkdAbsYddVvMr3V9lChoBmgJaA9DCFaalIJuDmnAlIaUUpRoFU2DA2gWR0BvFLDfm9xqdX2UKGgGaAloD0MIMGXggJamN0CUhpRSlGgVTegDaBZHQG8jkPtlZox1fZQoaAZoCWgPQwjVXG4w1BEoQJSGlFKUaBVN6ANoFkdAbyWxHoX9BXV9lChoBmgJaA9DCGDmO/iJXURAlIaUUpRoFU3oA2gWR0BvJwaJhvzfdX2UKGgGaAloD0MIGqchqvBrNkCUhpRSlGgVS2toFkdAb0KDBdld1XV9lChoBmgJaA9DCG8vaYzW60RAlIaUUpRoFU3oA2gWR0BvUBof0VafdX2UKGgGaAloD0MINbIrLSPLY8CUhpRSlGgVTa8DaBZHQG9QOKXOW0J1fZQoaAZoCWgPQwix+47hsSM9QJSGlFKUaBVLl2gWR0BvauOU+s5odX2UKGgGaAloD0MIznADPj9GSUCUhpRSlGgVTegDaBZHQG+Ix1X/5tZ1fZQoaAZoCWgPQwgX1LfM6XROQJSGlFKUaBVN6ANoFkdAb4j2aDwpfHV9lChoBmgJaA9DCJ+Sc2IPE0JAlIaUUpRoFUtsaBZHQG+agPEsJ6Z1fZQoaAZoCWgPQwiYNbHAVzQIQJSGlFKUaBVLWmgWR0BvommJm/WUdX2UKGgGaAloD0MIm5FB7iLMAECUhpRSlGgVS35oFkdAb6qhib2DhHVlLg=="
91
  },
92
  "ep_success_buffer": {
93
  ":type:": "<class 'collections.deque'>",
94
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
  },
96
+ "_n_updates": 40,
97
  "n_steps": 1024,
98
  "gamma": 0.999,
99
  "gae_lambda": 0.98,
100
  "ent_coef": 0.01,
101
  "vf_coef": 0.5,
102
  "max_grad_norm": 0.5,
103
+ "batch_size": 32,
104
  "n_epochs": 4,
105
  "clip_range": {
106
  ":type:": "<class 'function'>",
thicc-ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4d28df44c91ddb46cc6d0f03c81773075ed5d19146134e5812446b900d363beb
3
  size 185029
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0fe870e00bd55a13ab0fa4ec51d2a5cf16eea6c4de7a9a941d5cbefbfac2ae9
3
  size 185029
thicc-ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ef4f1e6a355ef19fd312dd3eed7827afb1d0ed453999c2c4fbdd311f536c9683
3
  size 93557
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1c2c0271d01faf248eabed69f3be44c6f424e781fa561eb46cd050eb7507b4f
3
  size 93557