YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

Google ViT Model

Model Class

base_model = ViTModel.from_pretrained("google/vit-base-patch16-224-in21k")

class ViTForRegression(nn.Module):
    def __init__(self, base_model, num_outputs=2):
        super(ViTForRegression, self).__init__()
        self.base_model = base_model
        hidden_size = base_model.config.hidden_size
        self.regression_head = nn.Linear(hidden_size, num_outputs)

    def forward(self, pixel_values):
        outputs = self.base_model(pixel_values=pixel_values)
        pooler_output = outputs.pooler_output
        predictions = self.regression_head(pooler_output)
        return predictions

model = ViTForRegression(base_model).to(device)

How to Run

In the notebook ViT.ipynb, replace the line:

dataset_test = load_dataset("gydou/released_img")

with the proper location of the testing dataset.

NOTE: No .pth file, this model did not perform well enough on sample test dataset.

Training Dataset Statistics

lat_std = 0.0006914493505038013
lon_std = 0.0006539239061573955
lat_mean = 39.9517411499467
lon_mean = -75.19143213125122
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.