CGscorpion's picture
End of training
0dedf82 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch32-384
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch32-384-finetuned-eurosat-albumentations
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9726027397260274

vit-base-patch32-384-finetuned-eurosat-albumentations

This model is a fine-tuned version of google/vit-base-patch32-384 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1871
  • Accuracy: 0.9726

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7204 0.9412 12 0.5695 0.7397
0.4269 1.9804 25 0.2537 0.9178
0.1605 2.9412 37 0.3347 0.8767
0.0758 3.9804 50 0.2203 0.9041
0.0405 4.9412 62 0.3563 0.9178
0.0358 5.9804 75 0.2326 0.9315
0.0188 6.9412 87 0.2046 0.9315
0.026 7.9804 100 0.2195 0.8904
0.0582 8.9412 112 0.3378 0.9178
0.0113 9.9804 125 0.2685 0.9178
0.0081 10.9412 137 0.2443 0.9315
0.0091 11.9804 150 0.4675 0.9041
0.0065 12.9412 162 0.3252 0.9452
0.0026 13.9804 175 0.1871 0.9726
0.0043 14.9412 187 0.2256 0.9589
0.0094 15.9804 200 0.1980 0.9452
0.0028 16.9412 212 0.2928 0.9315
0.0003 17.9804 225 0.2241 0.9726
0.0006 18.9412 237 0.2396 0.9726
0.0012 19.9804 250 0.2663 0.9315
0.0001 20.9412 262 0.2266 0.9726
0.0002 21.9804 275 0.2637 0.9452
0.0001 22.9412 287 0.2873 0.9452
0.0003 23.9804 300 0.2068 0.9589
0.0001 24.9412 312 0.2485 0.9452
0.0047 25.9804 325 0.3375 0.9178
0.0015 26.9412 337 0.3132 0.9589
0.0001 27.9804 350 0.3148 0.9452
0.0025 28.9412 362 0.2533 0.9452
0.0038 29.9804 375 0.2860 0.9315
0.0025 30.9412 387 0.2785 0.9452
0.0031 31.9804 400 0.3246 0.9452
0.0 32.9412 412 0.3367 0.9452
0.0006 33.9804 425 0.2625 0.9726
0.0 34.9412 437 0.2689 0.9589
0.0007 35.9804 450 0.2891 0.9726
0.0003 36.9412 462 0.4523 0.9315
0.0003 37.9804 475 0.3426 0.9452
0.0001 38.9412 487 0.3167 0.9589
0.0 39.9804 500 0.3237 0.9589
0.0002 40.9412 512 0.3085 0.9589
0.0 41.9804 525 0.3095 0.9589
0.0 42.9412 537 0.3049 0.9589
0.0002 43.9804 550 0.3039 0.9589
0.0001 44.9412 562 0.3044 0.9589
0.0001 45.9804 575 0.3031 0.9726
0.0 46.9412 587 0.3028 0.9726
0.0 47.9804 600 0.3027 0.9726

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.3