|
--- |
|
license: mit |
|
pipeline_tag: image-text-to-text |
|
library_name: transformers |
|
base_model: |
|
- OpenGVLab/InternVL2-1B |
|
- OpenGVLab/InternVL2_5-8B |
|
- OpenGVLab/InternVL2_5-4B |
|
- OpenGVLab/InternViT-300M-448px-V2_5 |
|
- internlm/internlm2_5-7b-chat |
|
- Qwen/Qwen2-0.5B-Instruct |
|
- Qwen/Qwen2.5-3B-Instruct |
|
base_model_relation: merge |
|
language: |
|
- multilingual |
|
tags: |
|
- Sa2VA |
|
- custom_code |
|
--- |
|
|
|
# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos |
|
|
|
[\[π GitHub\]](https://github.com/magic-research/Sa2VA) |
|
[\[π Sa2VA paper\]](https://arxiv.org/abs/2501.04001) |
|
[\[π Quick Start\]](#quick-start) |
|
|
|
|
|
|
|
## Introduction |
|
|
|
Sa2VA is an MLLM capable of question answering, visual prompt understanding, and dense object segmentation at both image and video levels. It achieves comparable performance to SOTA MLLMs Qwen2-VL and InternVL2.5 on question-answering benchmarks. Additionally, Sa2VA possesses the visual prompt understanding and dense object segmentation capabilities that SOTA MLLMs Qwen2-VL and InternVL2.5 lack. Sa2VA achieves SOTA performance on both image and video grounding and segmentation benchmarks. |
|
|
|
## Sa2VA Family |
|
|
|
We built the Sa2VA series based on Qwen2-VL and InternVL2/2.5. In the following table, we provide some Sa2VA models built on InternVL2.5. Other Sa2VA models will be open-sourced soon. |
|
|
|
| Model Name | Base MLLM | Language Part | HF Link | |
|
|:----------:|:-----------------------------------------------------------------:|:---------------------------------------------------------------------------:|:----------------------------------------------------:| |
|
| Sa2VA-1B | [InternVL2.0-1B](https://huggingface.co./OpenGVLab/InternVL2-1B) | [Qwen2-0.5B-Instruct](https://huggingface.co./Qwen/Qwen2-0.5B-Instruct) | [π€ link](https://huggingface.co./ByteDance/Sa2VA-1B) | |
|
| Sa2VA-4B | [InternVL2.5-4B](https://huggingface.co./OpenGVLab/InternVL2_5-4B) | [Qwen2.5-3B-Instruct](https://huggingface.co./Qwen/Qwen2.5-3B-Instruct) | [π€ link](https://huggingface.co./ByteDance/Sa2VA-4B) | |
|
| Sa2VA-8B | [InternVL2.5-8B](https://huggingface.co./OpenGVLab/InternVL2_5-8B) | [internlm2_5-7b-chat](https://huggingface.co./internlm/internlm2_5-7b-chat) | [π€ link](https://huggingface.co./ByteDance/Sa2VA-8B) | |
|
|
|
## Sa2VA Performance |
|
| Model Name | MMBench | MME | RefCOCO | RefCOCO+ | RefCOCOg | MeVIS | DAVIS | ReVOS | |
|
|:----------:|:---------------------------------------------------------------:|:--------------------------------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:-----:| |
|
| Sa2VA-1B | 1381/405 | 68.3 | 77.4 | 69.9 | 72.3 | 50.8 | 72.3 | 47.6 | |
|
| Sa2VA-4B | 1536/530 | 77.3 | 78.9 | 71.7 | 74.1 | 52.1 | 73.8 | 53.2 | |
|
| Sa2VA-8B | 1617/511 | 81.6 | 81.6 | 76.2 | 78.7 | 57.0 | 75.2 | 57.6 | |
|
|
|
|
|
## Quick Start |
|
|
|
We provide an example code to run `Sa2VA` using `transformers`. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
|
|
# load the model and tokenizer |
|
path = "ByteDance/Sa2VA-4B" |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=True, |
|
trust_remote_code=True).eval().cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) |
|
|
|
# for image chat |
|
image_path = "/PATH/TO/IMAGE" |
|
text_prompts = "<image>Please describe the image." |
|
image = Image.open(image_path).convert('RGB') |
|
input_dict = { |
|
'image': image, |
|
'text': text_prompts, |
|
'past_text': '', |
|
'mask_prompts': None, |
|
'tokenizer': tokenizer, |
|
} |
|
return_dict = model.predict_forward(**input_dict) |
|
answer = return_dict["prediction"] # the text format answer |
|
|
|
# for image chat with segmentation output |
|
image_path = "/PATH/TO/IMAGE" |
|
text_prompts = "<image>Could you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer." |
|
image = Image.open(image_path).convert('RGB') |
|
input_dict = { |
|
'image': image, |
|
'text': text_prompts, |
|
'past_text': '', |
|
'mask_prompts': None, |
|
'tokenizer': tokenizer, |
|
} |
|
return_dict = model.predict_forward(**input_dict) |
|
answer = return_dict["prediction"] # the text format answer |
|
masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(1, h, w), ...) |
|
|
|
# for chat with visual prompt (mask format) input |
|
mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w) |
|
image_path = "/PATH/TO/IMAGE" |
|
text_prompts = "<image>Can you provide me with a detailed description of the region in the picture marked by region1." |
|
image = Image.open(image_path).convert('RGB') |
|
input_dict = { |
|
'image': image, |
|
'text': text_prompts, |
|
'past_text': '', |
|
'mask_prompts': mask_prompts, |
|
'tokenizer': tokenizer, |
|
} |
|
return_dict = model.predict_forward(**input_dict) |
|
answer = return_dict["prediction"] # the text format answer |
|
|
|
# for video chat |
|
video_folder = "/PATH/TO/VIDEO_FOLDER" |
|
images_paths = os.listdir(video_folder) |
|
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths] |
|
if len(images_paths) > 5: # uniformly sample 5 frames |
|
step = (len(images_paths) - 1) // (5 - 1) |
|
images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]] |
|
text_prompts = "<image>Please describe the video." |
|
input_dict = { |
|
'video': images_paths, |
|
'text': text_prompts, |
|
'past_text': '', |
|
'mask_prompts': None, |
|
'tokenizer': tokenizer, |
|
} |
|
return_dict = model.predict_forward(**input_dict) |
|
answer = return_dict["prediction"] # the text format answer |
|
|
|
|
|
# for video chat with segmentation mask output |
|
video_folder = "/PATH/TO/VIDEO_FOLDER" |
|
images_paths = os.listdir(video_folder) |
|
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths] |
|
text_prompts = "<image>Please segment the person." |
|
input_dict = { |
|
'video': images_paths, |
|
'text': text_prompts, |
|
'past_text': '', |
|
'mask_prompts': None, |
|
'tokenizer': tokenizer, |
|
} |
|
return_dict = model.predict_forward(**input_dict) |
|
answer = return_dict["prediction"] # the text format answer |
|
masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(n_frames, h, w), ...) |
|
``` |
|
|
|
## Citation |
|
|
|
If you find this project useful in your research, please consider citing: |
|
|
|
```BibTeX |
|
@article{sa2va, |
|
title={Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos}, |
|
author={Yuan, Haobo and Li, Xiangtai and Zhang, Tao and Huang, Zilong Huang and Xu, Shilin and Ji, Shunping and Tong, Yunhai and Qi, Lu and Feng, Jiashi and Yang, Ming-Hsuan}, |
|
journal={arXiv preprint}, |
|
year={2025} |
|
} |
|
``` |
|
|