|
--- |
|
|
|
datasets: |
|
- dominguesm/Canarim-Instruct-PTBR-Dataset |
|
library_name: adapter-transformers |
|
pipeline_tag: text-generation |
|
language: |
|
- pt |
|
- en |
|
thumbnail: https://blog.cobasi.com.br/wp-content/uploads/2022/08/AdobeStock_461738919.webp |
|
--- |
|
<!-- header start --> |
|
<div style="width: 100%;"> |
|
<img src="https://blog.cobasi.com.br/wp-content/uploads/2022/08/AdobeStock_461738919.webp" alt="Caramelo" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
|
|
<!-- header end --> |
|
|
|
# Caramelinho |
|
|
|
## Adapter Description |
|
This adapter was created with the [PEFT](https://github.com/huggingface/peft) library and allowed the base model **Falcon-7b** to be fine-tuned on the [Canarim](https://huggingface.co./datasets/dominguesm/Canarim-Instruct-PTBR-Dataset) by using the method **QLoRA**. |
|
|
|
## Model description |
|
|
|
[Falcon 7B](https://huggingface.co./tiiuae/falcon-7b) |
|
|
|
## Intended uses & limitations |
|
|
|
TBA |
|
|
|
## Training and evaluation data |
|
|
|
TBA |
|
|
|
|
|
### Training results |
|
|
|
|
|
### How to use |
|
```py |
|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig |
|
|
|
peft_model_id = "Bruno/Caramelinho" |
|
|
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.float16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(peft_model_id) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, |
|
return_dict=True, |
|
quantization_config=bnb_config, |
|
trust_remote_code=True, |
|
device_map={"": 0}) |
|
prompt_input = "Abaixo está uma declaração que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que conclua corretamente a solicitação.\n\n ### Instrução:\n{instruction}\n\n### Entrada:\n{input}\n\n### Resposta:\n" |
|
prompt_no_input = "Abaixo está uma instrução que descreve uma tarefa. Escreva uma resposta que conclua corretamente a solicitação.\n\n### Instrução:\n{instruction}\n\n### Resposta:\n" |
|
|
|
def create_prompt(instruction, input=None): |
|
if input: |
|
return prompt_input.format(instruction=instruction, input=input) |
|
else: |
|
return prompt_no_input.format(instruction=instruction) |
|
|
|
def generate( |
|
instruction, |
|
input=None, |
|
max_new_tokens=128, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
repetition_penalty=1.7, |
|
max_length=512 |
|
): |
|
prompt = create_prompt(instruction, input) |
|
inputs = tokenizer.encode_plus(prompt, return_tensors="pt", truncation=True, max_length=max_length, padding="longest") |
|
input_ids = inputs["input_ids"].to("cuda") |
|
attention_mask = inputs["attention_mask"].to("cuda") |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
repetition_penalty=repetition_penalty, |
|
length_penalty=0.8, |
|
early_stopping=True, |
|
output_scores=True, |
|
return_dict_in_generate=True |
|
) |
|
|
|
output = tokenizer.decode(generation_output.sequences[0], skip_special_tokens=True) |
|
return output.split("### Resposta:")[1] |
|
|
|
instruction = "Descrever como funcionam os computadores quânticos." |
|
print("Instrução:", instruction) |
|
print("Resposta:", generate(instruction)) |
|
|
|
|
|
|
|
### Saída |
|
|
|
Instrução: Descrever como funcionam os computadores quânticos. |
|
Resposta: |
|
Os computadores quânticos são um tipo de computador cuja arquitetura é baseada na mecânica quântica. Os computadores quânticos são capazes de realizar operações matemáticas complexas em um curto espaço de tempo. |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|