Brecon's picture
Update README.md
5d1a4d2
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: Brecon/master_bert_validation_model
    results: []
datasets:
  - Brecon/Master_Train_Test
metrics:
  - accuracy
value:
  - 20

Brecon/master_bert_validation_model

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.9239
  • Validation Loss: 0.9083
  • Train Accuracy: 0.3548
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
1.0593 0.9901 0.3548 0
0.9658 0.9304 0.3548 1
0.9239 0.9083 0.3548 2

Framework versions

  • Transformers 4.33.1
  • TensorFlow 2.13.0
  • Datasets 2.14.5
  • Tokenizers 0.11.0