|
--- |
|
base_model: facebook/mbart-large-cc25 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: en+no_processing |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# en+no_processing |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co./facebook/mbart-large-cc25) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4481 |
|
- Smatch Precision: 80.57 |
|
- Smatch Recall: 83.81 |
|
- Smatch Fscore: 82.16 |
|
- Smatch Unparsable: 0 |
|
- Percent Not Recoverable: 0.3484 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Smatch Precision | Smatch Recall | Smatch Fscore | Smatch Unparsable | Percent Not Recoverable | |
|
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:-------------:|:-----------------:|:-----------------------:| |
|
| 0.3471 | 1.0 | 3477 | 1.4889 | 22.35 | 73.05 | 34.23 | 0 | 0.1161 | |
|
| 0.1741 | 2.0 | 6954 | 0.8681 | 30.1 | 71.92 | 42.44 | 0 | 0.1161 | |
|
| 0.1296 | 3.0 | 10431 | 0.7081 | 38.6 | 78.68 | 51.8 | 0 | 0.0581 | |
|
| 0.1308 | 4.0 | 13908 | 0.9546 | 37.49 | 78.23 | 50.69 | 0 | 0.0 | |
|
| 0.2213 | 5.0 | 17385 | 0.5544 | 47.63 | 81.17 | 60.03 | 0 | 0.0 | |
|
| 0.0317 | 6.0 | 20862 | 0.4884 | 49.3 | 80.9 | 61.27 | 0 | 0.0 | |
|
| 0.1007 | 7.0 | 24339 | 0.4763 | 54.88 | 82.09 | 65.78 | 0 | 0.0 | |
|
| 0.092 | 8.0 | 27817 | 0.4444 | 57.37 | 83.2 | 67.91 | 0 | 0.0 | |
|
| 0.1051 | 9.0 | 31294 | 0.4192 | 64.37 | 83.81 | 72.82 | 0 | 0.0 | |
|
| 0.0079 | 10.0 | 34771 | 0.4685 | 61.3 | 83.1 | 70.55 | 0 | 0.0 | |
|
| 0.0211 | 11.0 | 38248 | 0.4389 | 63.36 | 84.57 | 72.44 | 0 | 0.1161 | |
|
| 0.1122 | 12.0 | 41725 | 0.4146 | 69.39 | 83.56 | 75.82 | 0 | 0.0581 | |
|
| 0.0183 | 13.0 | 45202 | 0.4003 | 73.9 | 83.71 | 78.5 | 0 | 0.0 | |
|
| 0.0244 | 14.0 | 48679 | 0.4208 | 73.79 | 83.92 | 78.53 | 0 | 0.1161 | |
|
| 0.0116 | 15.0 | 52156 | 0.4248 | 73.88 | 83.85 | 78.55 | 0 | 0.1161 | |
|
| 0.0357 | 16.0 | 55634 | 0.4235 | 75.78 | 84.08 | 79.71 | 0 | 0.1161 | |
|
| 0.0006 | 17.0 | 59111 | 0.4181 | 76.15 | 84.15 | 79.95 | 0 | 0.0581 | |
|
| 0.0329 | 18.0 | 62588 | 0.4494 | 77.21 | 84.12 | 80.52 | 0 | 0.0 | |
|
| 0.0003 | 19.0 | 66065 | 0.4389 | 78.02 | 84.13 | 80.96 | 0 | 0.0 | |
|
| 0.04 | 20.0 | 69542 | 0.4439 | 78.78 | 84.23 | 81.41 | 0 | 0.0 | |
|
| 0.0182 | 21.0 | 73019 | 0.4430 | 79.82 | 84.05 | 81.88 | 0 | 0.0581 | |
|
| 0.0006 | 22.0 | 76496 | 0.4488 | 79.96 | 83.74 | 81.81 | 0 | 0.0581 | |
|
| 0.0074 | 23.0 | 79973 | 0.4569 | 79.84 | 83.85 | 81.79 | 0 | 0.0581 | |
|
| 0.0133 | 24.0 | 83451 | 0.4469 | 80.45 | 83.81 | 82.09 | 0 | 0.2904 | |
|
| 0.0055 | 25.0 | 86925 | 0.4481 | 80.57 | 83.81 | 82.16 | 0 | 0.3484 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.2 |
|
- Tokenizers 0.13.3 |
|
|