SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the code-search-net/code_search_net dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: code
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("BoghdadyJR/al-MiniLM-L6-v2")
# Run inference
sentences = [
'Keypoint.copy',
'def copy(self, x=None, y=None):\n """\n Create a shallow copy of the Keypoint object.\n\n Parameters\n ----------\n x : None or number, optional\n Coordinate of the keypoint on the x axis.\n If ``None``, the instance\'s value will be copied.\n\n y : None or number, optional\n Coordinate of the keypoint on the y axis.\n If ``None``, the instance\'s value will be copied.\n\n Returns\n -------\n imgaug.Keypoint\n Shallow copy.\n\n """\n return self.deepcopy(x=x, y=y)',
'def build_words_dataset(words=None, vocabulary_size=50000, printable=True, unk_key=\'UNK\'):\n """Build the words dictionary and replace rare words with \'UNK\' token.\n The most common word has the smallest integer id.\n\n Parameters\n ----------\n words : list of str or byte\n The context in list format. You may need to do preprocessing on the words, such as lower case, remove marks etc.\n vocabulary_size : int\n The maximum vocabulary size, limiting the vocabulary size. Then the script replaces rare words with \'UNK\' token.\n printable : boolean\n Whether to print the read vocabulary size of the given words.\n unk_key : str\n Represent the unknown words.\n\n Returns\n --------\n data : list of int\n The context in a list of ID.\n count : list of tuple and list\n Pair words and IDs.\n - count[0] is a list : the number of rare words\n - count[1:] are tuples : the number of occurrence of each word\n - e.g. [[\'UNK\', 418391], (b\'the\', 1061396), (b\'of\', 593677), (b\'and\', 416629), (b\'one\', 411764)]\n dictionary : dictionary\n It is `word_to_id` that maps word to ID.\n reverse_dictionary : a dictionary\n It is `id_to_word` that maps ID to word.\n\n Examples\n --------\n >>> words = tl.files.load_matt_mahoney_text8_dataset()\n >>> vocabulary_size = 50000\n >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size)\n\n References\n -----------------\n - `tensorflow/examples/tutorials/word2vec/word2vec_basic.py <https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py>`__\n\n """\n if words is None:\n raise Exception("words : list of str or byte")\n\n count = [[unk_key, -1]]\n count.extend(collections.Counter(words).most_common(vocabulary_size - 1))\n dictionary = dict()\n for word, _ in count:\n dictionary[word] = len(dictionary)\n data = list()\n unk_count = 0\n for word in words:\n if word in dictionary:\n index = dictionary[word]\n else:\n index = 0 # dictionary[\'UNK\']\n unk_count += 1\n data.append(index)\n count[0][1] = unk_count\n reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))\n if printable:\n tl.logging.info(\'Real vocabulary size %d\' % len(collections.Counter(words).keys()))\n tl.logging.info(\'Limited vocabulary size {}\'.format(vocabulary_size))\n if len(collections.Counter(words).keys()) < vocabulary_size:\n raise Exception(\n "len(collections.Counter(words).keys()) >= vocabulary_size , the limited vocabulary_size must be less than or equal to the read vocabulary_size"\n )\n return data, count, dictionary, reverse_dictionary',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8806 |
spearman_cosine | 0.881 |
pearson_manhattan | 0.8781 |
spearman_manhattan | 0.8798 |
pearson_euclidean | 0.8794 |
spearman_euclidean | 0.881 |
pearson_dot | 0.8806 |
spearman_dot | 0.881 |
pearson_max | 0.8806 |
spearman_max | 0.881 |
Training Details
Training Dataset
code-search-net/code_search_net
- Dataset: code-search-net/code_search_net
- Size: 20,000 training samples
- Columns:
func_name
andwhole_func_string
- Approximate statistics based on the first 1000 samples:
func_name whole_func_string type string string details - min: 3 tokens
- mean: 8.18 tokens
- max: 21 tokens
- min: 38 tokens
- mean: 192.0 tokens
- max: 384 tokens
- Samples:
func_name whole_func_string ImageGraphCut.__msgc_step3_discontinuity_localization
def __msgc_step3_discontinuity_localization(self):
"""
Estimate discontinuity in basis of low resolution image segmentation.
:return: discontinuity in low resolution
"""
import scipy
start = self._start_time
seg = 1 - self.segmentation.astype(np.int8)
self.stats["low level object voxels"] = np.sum(seg)
self.stats["low level image voxels"] = np.prod(seg.shape)
# in seg is now stored low resolution segmentation
# back to normal parameters
# step 2: discontinuity localization
# self.segparams = sparams_hi
seg_border = scipy.ndimage.filters.laplace(seg, mode="constant")
logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None))
# logger.debug(str(np.max(seg_border)))
# logger.debug(str(np.min(seg_border)))
seg_border[seg_border != 0] = 1
logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None))
# scipy.ndimage.morphology.distance_transform_edt
boundary_dilatation_distance = self.segparams["boundary_dilatation_distance"]
seg = scipy.ndimage.morphology.binary_dilation(
seg_border,
# seg,
np.ones(
[
(boundary_dilatation_distance * 2) + 1,
(boundary_dilatation_distance * 2) + 1,
(boundary_dilatation_distance * 2) + 1,
]
),
)
if self.keep_temp_properties:
self.temp_msgc_lowres_discontinuity = seg
else:
self.temp_msgc_lowres_discontinuity = None
if self.debug_images:
import sed3
pd = sed3.sed3(seg_border) # ), contour=seg)
pd.show()
pd = sed3.sed3(seg) # ), contour=seg)
pd.show()
# segzoom = scipy.ndimage.interpolation.zoom(seg.astype('float'), zoom,
# order=0).astype('int8')
self.stats["t3"] = time.time() - start
return segImageGraphCut.__multiscale_gc_lo2hi_run
def __multiscale_gc_lo2hi_run(self): # , pyed):
"""
Run Graph-Cut segmentation with refinement of low resolution multiscale graph.
In first step is performed normal GC on low resolution data
Second step construct finer grid on edges of segmentation from first
step.
There is no option for use withoutuse_boundary_penalties
"""
# from PyQt4.QtCore import pyqtRemoveInputHook
# pyqtRemoveInputHook()
self._msgc_lo2hi_resize_init()
self.__msgc_step0_init()
hard_constraints = self.__msgc_step12_low_resolution_segmentation()
# ===== high resolution data processing
seg = self.__msgc_step3_discontinuity_localization()
self.stats["t3.1"] = (time.time() - self._start_time)
graph = Graph(
seg,
voxelsize=self.voxelsize,
nsplit=self.segparams["block_size"],
edge_weight_table=self._msgc_npenalty_table,
compute_low_nodes_index=True,
)
# graph.run() = graph.generate_base_grid() + graph.split_voxels()
# graph.run()
graph.generate_base_grid()
self.stats["t3.2"] = (time.time() - self._start_time)
graph.split_voxels()
self.stats["t3.3"] = (time.time() - self._start_time)
self.stats.update(graph.stats)
self.stats["t4"] = (time.time() - self._start_time)
mul_mask, mul_val = self.__msgc_tlinks_area_weight_from_low_segmentation(seg)
area_weight = 1
unariesalt = self.__create_tlinks(
self.img,
self.voxelsize,
self.seeds,
area_weight=area_weight,
hard_constraints=hard_constraints,
mul_mask=None,
mul_val=None,
)
# N-links prepared
self.stats["t5"] = (time.time() - self._start_time)
un, ind = np.unique(graph.msinds, return_index=True)
self.stats["t6"] = (time.time() - self._start_time)
self.stats["t7"] = (time.time() - self._start_time)
unariesalt2_lo2hi = np.hstack(
[unariesalt[ind, 0, 0].reshape(-1, 1), unariesalt[ind, 0, 1].reshape(-1, 1)]
)
nlinks_lo2hi = np.hstack([graph.edges, graph.edges_weights.reshape(-1, 1)])
if self.debug_images:
import sed3
ed = sed3.sed3(unariesalt[:, :, 0].reshape(self.img.shape))
ed.show()
import sed3
ed = sed3.sed3(unariesalt[:, :, 1].reshape(self.img.shape))
ed.show()
# ed = sed3.sed3(seg)
# ed.show()
# import sed3
# ed = sed3.sed3(graph.data)
# ed.show()
# import sed3
# ed = sed3.sed3(graph.msinds)
# ed.show()
# nlinks, unariesalt2, msinds = self.__msgc_step45678_construct_graph(area_weight, hard_constraints, seg)
# self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds)
self.__msgc_step9_finish_perform_gc_and_reshape(
nlinks_lo2hi, unariesalt2_lo2hi, graph.msinds
)
self._msgc_lo2hi_resize_clean_finish()ImageGraphCut.__multiscale_gc_hi2lo_run
def __multiscale_gc_hi2lo_run(self): # , pyed):
"""
Run Graph-Cut segmentation with simplifiyng of high resolution multiscale graph.
In first step is performed normal GC on low resolution data
Second step construct finer grid on edges of segmentation from first
step.
There is no option for use withoutuse_boundary_penalties
"""
# from PyQt4.QtCore import pyqtRemoveInputHook
# pyqtRemoveInputHook()
self.__msgc_step0_init()
hard_constraints = self.__msgc_step12_low_resolution_segmentation()
# ===== high resolution data processing
seg = self.__msgc_step3_discontinuity_localization()
nlinks, unariesalt2, msinds = self.__msgc_step45678_hi2lo_construct_graph(
hard_constraints, seg
)
self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds) - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
code-search-net/code_search_net
- Dataset: code-search-net/code_search_net
- Size: 15,000 evaluation samples
- Columns:
func_name
andwhole_func_string
- Approximate statistics based on the first 1000 samples:
func_name whole_func_string type string string details - min: 3 tokens
- mean: 9.23 tokens
- max: 24 tokens
- min: 50 tokens
- mean: 276.31 tokens
- max: 384 tokens
- Samples:
func_name whole_func_string learn
def learn(env,
network,
seed=None,
lr=5e-4,
total_timesteps=100000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
train_freq=1,
batch_size=32,
print_freq=100,
checkpoint_freq=10000,
checkpoint_path=None,
learning_starts=1000,
gamma=1.0,
target_network_update_freq=500,
prioritized_replay=False,
prioritized_replay_alpha=0.6,
prioritized_replay_beta0=0.4,
prioritized_replay_beta_iters=None,
prioritized_replay_eps=1e-6,
param_noise=False,
callback=None,
load_path=None,
**network_kwargs
):
"""Train a deepq model.
Parameters
-------
env: gym.Env
environment to train on
network: string or a function
neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
(mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
seed: int or None
prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
lr: float
learning rate for adam optimizer
total_timesteps: int
number of env steps to optimizer for
buffer_size: int
size of the replay buffer
exploration_fraction: float
fraction of entire training period over which the exploration rate is annealed
exploration_final_eps: float
final value of random action probability
train_freq: int
update the model everytrain_freq
steps.
set to None to disable printing
batch_size: int
size of a batched sampled from replay buffer for training
print_freq: int
how often to print out training progress
set to None to disable printing
checkpoint_freq: int
how often to save the model. This is so that the best version is restored
at the end of the training. If you do not wish to restore the best version at
the end of the training set this variable to None.
learning_starts: int
how many steps of the model to collect transitions for before learning starts
gamma: float
discount factor
target_network_update_freq: int
update the target network everytarget_network_update_freq
steps.
prioritized_replay: True
if True prioritized replay buffer will be used.
prioritized_replay_alpha: float
alpha parameter for prioritized replay buffer
prioritized_replay_beta0: float
initial value of beta for prioritized replay buffer
prioritized_replay_beta_iters: int
number of iterations over which beta will be annealed from initial value
to 1.0. If set to None equals to total_timesteps.
prioritized_replay_eps: float
epsilon to add to the TD errors when updating priorities.
param_noise: bool
whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
callback: (locals, globals) -> None
function called at every steps with state of the algorithm.
If callback returns true training stops.
load_path: str
path to load the model from. (default: None)
**network_kwargs
additional keyword arguments to pass to the network builder.
Returns
-------
act: ActWrapper
Wrapper over act function. Adds ability to save it and load it.
See header of baselines/deepq/categorical.py for details on the act function.
"""
# Create all the functions necessary to train the model
sess = get_session()
set_global_seeds(seed)
q_func = build_q_func(network, **network_kwargs)
# capture the shape outside the closure so that the env object is not serialized
# by cloudpickle when serializing make_obs_ph
observation_space = env.observation_space
def make_obs_ph(name):
return ObservationInput(observation_space, name=name)
act, train, update_target, debug = deepq.build_train(
make_obs_ph=make_obs_ph,
q_func=q_func,
num_actions=env.action_space.n,
optimizer=tf.train.AdamOptimizer(learning_rate=lr),
gamma=gamma,
grad_norm_clipping=10,
param_noise=param_noise
)
act_params = {
'make_obs_ph': make_obs_ph,
'q_func': q_func,
'num_actions': env.action_space.n,
}
act = ActWrapper(act, act_params)
# Create the replay buffer
if prioritized_replay:
replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
if prioritized_replay_beta_iters is None:
prioritized_replay_beta_iters = total_timesteps
beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
initial_p=prioritized_replay_beta0,
final_p=1.0)
else:
replay_buffer = ReplayBuffer(buffer_size)
beta_schedule = None
# Create the schedule for exploration starting from 1.
exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
initial_p=1.0,
final_p=exploration_final_eps)
# Initialize the parameters and copy them to the target network.
U.initialize()
update_target()
episode_rewards = [0.0]
saved_mean_reward = None
obs = env.reset()
reset = True
with tempfile.TemporaryDirectory() as td:
td = checkpoint_path or td
model_file = os.path.join(td, "model")
model_saved = False
if tf.train.latest_checkpoint(td) is not None:
load_variables(model_file)
logger.log('Loaded model from {}'.format(model_file))
model_saved = True
elif load_path is not None:
load_variables(load_path)
logger.log('Loaded model from {}'.format(load_path))
for t in range(total_timesteps):
if callback is not None:
if callback(locals(), globals()):
break
# Take action and update exploration to the newest value
kwargs = {}
if not param_noise:
update_eps = exploration.value(t)
update_param_noise_threshold = 0.
else:
update_eps = 0.
# Compute the threshold such that the KL divergence between perturbed and non-perturbed
# policy is comparable to eps-greedy exploration with eps = exploration.value(t).
# See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
# for detailed explanation.
update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
kwargs['reset'] = reset
kwargs['update_param_noise_threshold'] = update_param_noise_threshold
kwargs['update_param_noise_scale'] = True
action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
env_action = action
reset = False
new_obs, rew, done, _ = env.step(env_action)
# Store transition in the replay buffer.
replay_buffer.add(obs, action, rew, new_obs, float(done))
obs = new_obs
episode_rewards[-1] += rew
if done:
obs = env.reset()
episode_rewards.append(0.0)
reset = True
if t > learning_starts and t % train_freq == 0:
# Minimize the error in Bellman's equation on a batch sampled from replay buffer.
if prioritized_replay:
experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
(obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
else:
obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
weights, batch_idxes = np.ones_like(rewards), None
td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
if prioritized_replay:
new_priorities = np.abs(td_errors) + prioritized_replay_eps
replay_buffer.update_priorities(batch_idxes, new_priorities)
if t > learning_starts and t % target_network_update_freq == 0:
# Update target network periodically.
update_target()
mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
num_episodes = len(episode_rewards)
if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
logger.record_tabular("steps", t)
logger.record_tabular("episodes", num_episodes)
logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
logger.dump_tabular()
if (checkpoint_freq is not None and t > learning_starts and
num_episodes > 100 and t % checkpoint_freq == 0):
if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
if print_freq is not None:
logger.log("Saving model due to mean reward increase: {} -> {}".format(
saved_mean_reward, mean_100ep_reward))
save_variables(model_file)
model_saved = True
saved_mean_reward = mean_100ep_reward
if model_saved:
if print_freq is not None:
logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
load_variables(model_file)
return actActWrapper.save_act
def save_act(self, path=None):
"""Save model to a pickle located atpath
"""
if path is None:
path = os.path.join(logger.get_dir(), "model.pkl")
with tempfile.TemporaryDirectory() as td:
save_variables(os.path.join(td, "model"))
arc_name = os.path.join(td, "packed.zip")
with zipfile.ZipFile(arc_name, 'w') as zipf:
for root, dirs, files in os.walk(td):
for fname in files:
file_path = os.path.join(root, fname)
if file_path != arc_name:
zipf.write(file_path, os.path.relpath(file_path, td))
with open(arc_name, "rb") as f:
model_data = f.read()
with open(path, "wb") as f:
cloudpickle.dump((model_data, self._act_params), f)nature_cnn
def nature_cnn(unscaled_images, **conv_kwargs):
"""
CNN from Nature paper.
"""
scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
activ = tf.nn.relu
h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),
**conv_kwargs))
h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))
h3 = conv_to_fc(h3)
return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))) - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
---|---|---|---|---|
0 | 0 | - | - | 0.8810 |
0.08 | 100 | 0.4124 | 0.2191 | - |
0.16 | 200 | 0.108 | 0.0993 | - |
0.24 | 300 | 0.127 | 0.0756 | - |
0.32 | 400 | 0.0728 | - | - |
0.08 | 100 | 0.0662 | 0.0683 | - |
0.16 | 200 | 0.0321 | 0.0660 | - |
0.24 | 300 | 0.0815 | 0.0584 | - |
0.32 | 400 | 0.049 | 0.0591 | - |
0.4 | 500 | 0.0636 | 0.0612 | - |
0.48 | 600 | 0.0929 | 0.0577 | - |
0.56 | 700 | 0.0342 | 0.0568 | - |
0.64 | 800 | 0.0265 | 0.0572 | - |
0.72 | 900 | 0.0406 | 0.0551 | - |
0.8 | 1000 | 0.039 | 0.0549 | - |
0.88 | 1100 | 0.0376 | 0.0551 | - |
0.96 | 1200 | 0.0823 | 0.0556 | - |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.2
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for BoghdadyJR/al-MiniLM-L6-v2
Base model
sentence-transformers/all-mpnet-base-v2Dataset used to train BoghdadyJR/al-MiniLM-L6-v2
Evaluation results
- Pearson Cosine on sts devself-reported0.881
- Spearman Cosine on sts devself-reported0.881
- Pearson Manhattan on sts devself-reported0.878
- Spearman Manhattan on sts devself-reported0.880
- Pearson Euclidean on sts devself-reported0.879
- Spearman Euclidean on sts devself-reported0.881
- Pearson Dot on sts devself-reported0.881
- Spearman Dot on sts devself-reported0.881
- Pearson Max on sts devself-reported0.881
- Spearman Max on sts devself-reported0.881