image

Update!

  • [2024.08.08] preview ๋ชจ๋ธ์ด ์ตœ์ดˆ ์—…๋ฐ์ดํŠธ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. A100 120๋Œ€ ๊ทœ๋ชจ์˜ ์ปดํ“จํŒ… ํŒŒ์›Œ๋กœ ํ•™์Šต ์ง„ํ–‰์ค‘์œผ๋กœ ๋ชจ๋ธ์€ ๊ณ„์† ์—…๋ฐ์ดํŠธ๋  ์˜ˆ์ •์ž…๋‹ˆ๋‹ค.

Bllossom | Demo | Homepage | Github |

์ €ํฌ Bllossom ํŒ€์—์„œ llama3.1 ๊ธฐ๋ฐ˜์˜ ํ•œ๊ตญ์–ด-์˜์–ด ์ด์ค‘ ์–ธ์–ด๋ชจ๋ธ Bllossom-405B๋ฅผ ๊ณต๊ฐœํ•ฉ๋‹ˆ๋‹ค.
์ด๋ฒˆ Bllossom3.1-405B๋Š” preview ๋ฒ„์ „์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํŠน์ง•์„ ๋ณด์ž…๋‹ˆ๋‹ค.
 - Llama3.1-405B-Inst ๋Œ€๋น„ 5~10% ํ•œ๊ตญ์–ด ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค (single turn ๊ธฐ์ค€).
 - Llama3.1์˜ ์˜์–ด ์„ฑ๋Šฅ์„ ์ „ํ˜€ ์†์ƒ์‹œํ‚ค์ง€ ์•Š์€ ์™„์ „ํ•œ Bilingual ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
 - ๊ธฐ์กด ๋ชจ๋ธ ๋Œ€๋น„ ์ž์—ฐ์Šค๋Ÿฝ๊ณ  ์นœ์ ˆํ•œ ํ•œ๊ตญ์–ด ๋ฌธ์žฅ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
 - ์ธ๊ฐ„ํ‰๊ฐ€, GPTํ‰๊ฐ€(MT-Bench, LogicKor 9์  ๋“ฑ) ๊ฒฐ๊ณผ GPT4์™€ ์œ ์‚ฌํ•˜๊ฑฐ๋‚˜ ์•ฝ๊ฐ„ ๋‚ฎ์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

ํ•ด๋‹น ๋ชจ๋ธ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ˜‘์—…์„ ํ† ๋Œ€๋กœ ๊ตฌ์ถ• ๋˜์—ˆ์Šต๋‹ˆ๋‹ค!
 - ์„œ์šธ๊ณผ๊ธฐ๋Œ€ MLP์—ฐ๊ตฌ์‹ค์˜ ๊ฒฝ๋Ÿ‰ํ™” ์‚ฌ์ „ ํ•™์Šต๊ธฐ๋ฒ•์ด ์ ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
 - ํ…Œ๋””์ธ์˜ ์ •๊ตํ•œ Instruction Tuning๊ณผ RAG ๊ธฐ์ˆ ์ด ์ ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
 - HP์˜ computing ์ง€์›์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
 - Common Crawl ์žฌ๋‹จ์˜ OscarํŒ€์—์„œ ์ ๊ทน์ ์ธ ๋ฐ์ดํ„ฐ ์ง€์›์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค

์–ธ์ œ๋‚˜ ๊ทธ๋žฌ๋“ฏ ํ•ด๋‹น ๋ชจ๋ธ์€ ์ƒ์—…์  ์ด์šฉ์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. A100 6๋Œ€๋งŒ ์ค€๋น„๋˜๋ฉด Bllossom์„ ์ด์šฉํ•ด ์—ฌ๋Ÿฌ๋ถ„๋งŒ์˜ ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด๋ณด์„ธ์š” GPT4๊ฐ€ ๋”์ด์ƒ ํ•„์š” ์—†์Šต๋‹ˆ๋‹ค.
GPU์ž์›์ด ๋ถ€์กฑํ•˜๋ฉด A100 3๊ฐœ ํ˜น์€ A6000 4๊ฐœ๋กœ ์–‘์žํ™” ๋ชจ๋ธ์„ ์ด์šฉํ•ด ๋ณด์„ธ์š”. [์–‘์žํ™”๋ชจ๋ธ](https://huggingface.co./MLP-KTLim/llama-3.1-Korean-Bllossom-405B-gguf-Q4_K_M)

1. Bllossom-8B๋Š” ์„œ์šธ๊ณผ๊ธฐ๋Œ€, ํ…Œ๋””์ธ, ์—ฐ์„ธ๋Œ€ ์–ธ์–ด์ž์› ์—ฐ๊ตฌ์‹ค์˜ ์–ธ์–ดํ•™์ž์™€ ํ˜‘์—…ํ•ด ๋งŒ๋“  ์‹ค์šฉ์ฃผ์˜๊ธฐ๋ฐ˜ ๋ฌด๋ฃŒ ์–ธ์–ด๋ชจ๋ธ๋กœ 2023๋…„๋ถ€ํ„ฐ ์ง€์†์ ์ธ ์—…๋ฐ์ดํŠธ๋ฅผ ํ†ตํ•ด ๊ด€๋ฆฌํ•ด ์˜ค๊ณ ์žˆ์Šต๋‹ˆ๋‹ค. ๋งŽ์ด ํ™œ์šฉํ•ด์ฃผ์„ธ์š” ๐Ÿ™‚
2. ์ดˆ ๊ฐ•๋ ฅํ•œ Advanced-Bllossom ๋ชจ๋ธ, ์‹œ๊ฐ-์–ธ์–ด ๋ชจ๋ธ์„ ๋ณด์œ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค! (๊ถ๊ธˆํ•˜์‹ ๋ถ„์€ ๊ฐœ๋ณ„ ์—ฐ๋ฝ์ฃผ์„ธ์š”!!)
3. Bllossom์€ NAACL2024, LREC-COLING2024 (๊ตฌ๋‘) ๋ฐœํ‘œ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
4. ์ข‹์€ ์–ธ์–ด๋ชจ๋ธ ๊ณ„์† ์—…๋ฐ์ดํŠธ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค!! ํ•œ๊ตญ์–ด ๊ฐ•ํ™”๋ฅผ์œ„ํ•ด ๊ณต๋™ ์—ฐ๊ตฌํ•˜์‹ค๋ถ„(ํŠนํžˆ๋…ผ๋ฌธ) ์–ธ์ œ๋“  ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค!! 
   ๊ทธ๋ฆฌ๊ณ  ์†Œ๋Ÿ‰์˜ GPU๋ผ๋„ ๋Œ€์—ฌ ๊ฐ€๋Šฅํ•œํŒ€์€ ์–ธ์ œ๋“  ์—ฐ๋ฝ์ฃผ์„ธ์š”! ๋งŒ๋“ค๊ณ  ์‹ถ์€๊ฑฐ ๋„์™€๋“œ๋ ค์š”.
The Bllossom language model is a Korean-English bilingual language model based on the open-source LLama3.1. It enhances the connection of knowledge between Korean and English. It has the following features:
 - Korean performance improved by 5-10% compared to Llama 3.1-405B-Inst (on Single Turn Eval).
 - A complete bilingual model that does not compromise the English performance of Llama 3.1.
 - Generates more natural and friendly Korean sentences compared to existing models.
 - Human evaluations and GPT evaluations (MT-Bench, LogicKor scoring 9, etc.) show performance similar to or slightly lower than GPT-4.

This model developed by MLPLab at Seoultech, Teddysum and Yonsei Univ

Example code

Colab Tutorial

Install Dependencies

pip install torch transformers==4.40.0 accelerate

Python code with Pipeline

import transformers
import torch

model_id = "Bllossom/llama-3.1-Korean-Bllossom-405B"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

pipeline.model.eval()

PROMPT = '''You are a helpful AI assistant. Please answer the user's questions kindly. ๋‹น์‹ ์€ ์œ ๋Šฅํ•œ AI ์–ด์‹œ์Šคํ„ดํŠธ ์ž…๋‹ˆ๋‹ค. ์‚ฌ์šฉ์ž์˜ ์งˆ๋ฌธ์— ๋Œ€ํ•ด ์นœ์ ˆํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•ด์ฃผ์„ธ์š”.'''
instruction = "์„œ์šธ์˜ ์œ ๋ช…ํ•œ ๊ด€๊ด‘ ์ฝ”์Šค๋ฅผ ๋งŒ๋“ค์–ด์ค„๋ž˜?"

messages = [
    {"role": "system", "content": f"{PROMPT}"},
    {"role": "user", "content": f"{instruction}"}
    ]

prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=2048,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9
)

print(outputs[0]["generated_text"][len(prompt):])
# ๋ฌผ๋ก ์ด์ฃ ! ์„œ์šธ์€ ๋‹ค์–‘ํ•œ ๋ฌธํ™”์™€ ์—ญ์‚ฌ, ์ž์—ฐ์„ ๊ฒธ๋น„ํ•œ ๋„์‹œ๋กœ, ๋งŽ์€ ๊ด€๊ด‘ ๋ช…์†Œ๋ฅผ ์ž๋ž‘ํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ ์„œ์šธ์˜ ์œ ๋ช…ํ•œ ๊ด€๊ด‘ ์ฝ”์Šค๋ฅผ ์†Œ๊ฐœํ•ด ๋“œ๋ฆด๊ฒŒ์š”.

### ์ฝ”์Šค 1: ์—ญ์‚ฌ์™€ ๋ฌธํ™” ํƒ๋ฐฉ

1. **๊ฒฝ๋ณต๊ถ**
   - ์„œ์šธ์˜ ๋Œ€ํ‘œ์ ์ธ ๊ถ๊ถ๋กœ, ์กฐ์„  ์™•์กฐ์˜ ์—ญ์‚ฌ์™€ ๋ฌธํ™”๋ฅผ ์ฒดํ—˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณณ์ž…๋‹ˆ๋‹ค.

2. **๋ถ์ดŒ ํ•œ์˜ฅ๋งˆ์„**
   - ์ „ํ†ต ํ•œ์˜ฅ์ด ์ž˜ ๋ณด์กด๋œ ๋งˆ์„๋กœ, ์กฐ์„ ์‹œ๋Œ€์˜ ์ƒํ™œ์ƒ์„ ๋Š๋‚„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

...

Supported by

  • Hewlett Packard (HP) Enterprise
  • Common Crawl
  • AICA

Citation

Language Model

@misc{bllossom,
  author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim},
  title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean},
  year = {2024},
  journal = {LREC-COLING 2024},
  paperLink = {\url{https://arxiv.org/pdf/2403.10882}},
 },
}

Vision-Language Model

@misc{bllossom-V,
  author = {Dongjae Shin, Hyunseok Lim, Inho Won, Changsu Choi, Minjun Kim, Seungwoo Song, Hangyeol Yoo, Sangmin Kim, Kyungtae Lim},
  title = {X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment},
  year = {2024},
  publisher = {GitHub},
  journal = {NAACL 2024 findings},
  paperLink = {\url{https://arxiv.org/pdf/2403.11399}},
 },
}

Contact

Contributor

Downloads last month
338
Safetensors
Model size
410B params
Tensor type
BF16
ยท
F32
ยท
F8_E4M3
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Bllossom/llama-3.1-Korean-Bllossom-405B

Quantized
(5)
this model