Text Generation
Transformers
Safetensors
llama
conversational
text-generation-inference
Inference Endpoints
File size: 4,817 Bytes
39280b3
 
dea2ad9
 
 
 
 
 
39280b3
 
dea2ad9
8d7bf6a
 
5e5b023
 
8d7bf6a
 
f945167
8d7bf6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b737d33
8d7bf6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a50b6da
 
 
8d7bf6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: llama3.1
datasets:
- euclaise/reddit-instruct-curated
- BintangFortuna/Reddit-Writing-SGPT
base_model:
- mergekit-community/mergekit-ties-svidyqt
---

### 1 Kaggle Account Fine-Tuning Challenge:
I just realized that abusing free services isn't cool, so I set myself a challenge—to fine-tune this model using only one Kaggle account

[Placeholder for image, maybe... or not]

Base model: [mergekit-community/mergekit-ties-svidyqt](https://huggingface.co./mergekit-community/mergekit-ties-svidyqt)

The dataset is already listed, with just a small addition of persona-like data generated with Gemma, and some instruction following data, probably less than 1000 examples, added for better generalization, since the two don’t have system turns (honestly, I just wanted to round it up from 24K to 25K, it looks nicer when tokenizing)
```
#TRAINING: STAGE ONE
layers = [
    {'layer': 0, 'components': ['v_proj', 'o_proj', 'down_proj', 'gate_proj']},
    {'layer': 1, 'components': ['o_proj', 'down_proj','gate_proj']},
    {'layer': 2, 'components': ['v_proj', 'o_proj', 'gate_proj']},
    {'layer': 3, 'components': ['o_proj', 'down_proj', 'gate_proj']},
    {'layer': 4, 'components': ['v_proj', 'o_proj', 'down_proj', 'gate_proj']}
]
    trainable_lm_head=True,
    trainable_embed_tokens=True,
    trainable_model_norm=True

#TRAINING: STAGE TWO
layers = [
    {'layer': 5, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 6, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 7, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
	#
    {'layer': 11, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 12, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 13, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
	#
    {'layer': 17, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 18, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 19, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
	#
    {'layer': 23, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 24, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 25, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
	#
    {'layer': 28, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 29, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']}
]
    trainable_lm_head=False,
    trainable_embed_tokens=False,
    trainable_model_norm=False
	
#TRAINING: STAGE THREE
#I changed the dataset seed at training stage 3, because... why not? The training was already a mess, might as well make it even more interesting
layers = [
    {'layer': 8, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 9, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 10, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
	#
    {'layer': 14, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 15, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 16, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
	#
    {'layer': 20, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 21, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 22, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
	#
    {'layer': 26, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 27, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
	#
    {'layer': 30, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 31, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']}
]
    trainable_lm_head=False,
    trainable_embed_tokens=False,
    trainable_model_norm=False
```