1 Kaggle Account Fine-Tuning Challenge:
I just realized that abusing free services isn't cool, so I set myself a challenge—to fine-tune this model using only one Kaggle account
[Placeholder for image, maybe... or not]
Base model: mergekit-community/mergekit-ties-svidyqt
The dataset is already listed, with just a small addition of persona-like data generated with Gemma, and some instruction following data, probably less than 1000 examples, added for better generalization, since the two don’t have system turns (honestly, I just wanted to round it up from 24K to 25K, it looks nicer when tokenizing)
#TRAINING: STAGE ONE
layers = [
{'layer': 0, 'components': ['v_proj', 'o_proj', 'down_proj', 'gate_proj']},
{'layer': 1, 'components': ['o_proj', 'down_proj','gate_proj']},
{'layer': 2, 'components': ['v_proj', 'o_proj', 'gate_proj']},
{'layer': 3, 'components': ['o_proj', 'down_proj', 'gate_proj']},
{'layer': 4, 'components': ['v_proj', 'o_proj', 'down_proj', 'gate_proj']}
]
trainable_lm_head=True,
trainable_embed_tokens=True,
trainable_model_norm=True
#TRAINING: STAGE TWO
layers = [
{'layer': 5, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 6, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 7, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
#
{'layer': 11, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 12, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 13, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
#
{'layer': 17, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 18, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 19, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
#
{'layer': 23, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 24, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 25, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
#
{'layer': 28, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 29, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']}
]
trainable_lm_head=False,
trainable_embed_tokens=False,
trainable_model_norm=False
#TRAINING: STAGE THREE
#I changed the dataset seed at training stage 3, because... why not? The training was already a mess, might as well make it even more interesting
layers = [
{'layer': 8, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 9, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 10, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
#
{'layer': 14, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 15, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 16, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
#
{'layer': 20, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 21, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 22, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
#
{'layer': 26, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 27, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
#
{'layer': 30, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
{'layer': 31, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']}
]
trainable_lm_head=False,
trainable_embed_tokens=False,
trainable_model_norm=False
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.