test-trainer / README.md
Binaryy's picture
🍻 cheers
b1fe6ca verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: test-trainer
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: Chess
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9107142857142857
          - name: F1
            type: f1
            value: 0.9121670865142396
          - name: Precision
            type: precision
            value: 0.9171626984126985
          - name: Recall
            type: recall
            value: 0.9107142857142857

test-trainer

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the Chess dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7291
  • Accuracy: 0.9107
  • F1: 0.9122
  • Precision: 0.9172
  • Recall: 0.9107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 50 1.6720 0.4821 0.4134 0.3870 0.4821
No log 2.0 100 1.4652 0.6429 0.6126 0.7414 0.6429
No log 3.0 150 1.1742 0.7321 0.7210 0.7792 0.7321
No log 4.0 200 0.9813 0.8393 0.8433 0.8589 0.8393
No log 5.0 250 0.8312 0.8214 0.8164 0.8516 0.8214
No log 6.0 300 0.7291 0.9107 0.9122 0.9172 0.9107

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.2.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3