|
--- |
|
language: |
|
- en |
|
- ar |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-generation |
|
tags: |
|
- medical |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
## Model Card for BiMediX-Bilingual |
|
|
|
### Model Details |
|
- **Name:** BiMediX |
|
- **Version:** 1.0 |
|
- **Type:** Bilingual Medical Mixture of Experts Large Language Model (LLM) |
|
- **Languages:** English, Arabic |
|
- **Model Architecture:** [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-Instruct-v0.1) |
|
- **Training Data:** BiMed1.3M, a bilingual dataset with diverse medical interactions. |
|
|
|
### Intended Use |
|
- **Primary Use:** Medical interactions in both English and Arabic. |
|
- **Capabilities:** MCQA, closed QA and chats. |
|
|
|
## Getting Started |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
model_id = "BiMediX/BiMediX-Bi" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
text = "Hello BiMediX! I've been experiencing increased tiredness in the past week." |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=500) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
### Training Procedure |
|
- **Dataset:** BiMed1.3M, 632 million healthcare specialized tokens. |
|
- **QLoRA Adaptation:** Implements a low-rank adaptation technique, incorporating learnable low-rank adapter weights into the experts and the routing network. This results in training about 4% of the original parameters. |
|
- **Training Resources:** The model underwent training on approximately 632 million tokens from the Arabic-English corpus, including 288 million tokens exclusively for English. |
|
|
|
### Model Performance |
|
- **Benchmarks:** Outperforms the baseline model and Jais-30B in medical evaluations. |
|
|
|
| **Model** | **CKG** | **CBio** | **CMed** | **MedGen** | **ProMed** | **Ana** | **MedMCQA** | **MedQA** | **PubmedQA** | **AVG** | |
|
|-----------------------------------|------------|-----------|-----------|-------------|-------------|---------|-------------|-----------|--------------|---------| |
|
| Jais-30B | 57.4 | 55.2 | 46.2 | 55.0 | 46.0 | 48.9 | 40.2 | 31.0 | 75.5 | 50.6 | |
|
| Mixtral-8x7B| 59.1 | 57.6 | 52.6 | 59.5 | 53.3 | 54.4 | 43.2 | 40.6 | 74.7 | 55.0 | |
|
| **BiMediX (Bilingual)** | **70.6** | **72.2** | **59.3** | **74.0** | **64.2** | **59.6**| **55.8** | **54.0** | **78.6** | **65.4**| |
|
|
|
### Safety and Ethical Considerations |
|
- **Potential issues**: hallucinations, toxicity, stereotypes. |
|
- **Usage:** Research purposes only. |
|
|
|
### Accessibility |
|
- **Availability:** [BiMediX GitHub Repository](https://github.com/mbzuai-oryx/BiMediX). |
|
- arxiv.org/abs/2402.13253 |
|
|
|
### Authors |
|
Sara Pieri, Sahal Shaji Mullappilly, Fahad Shahbaz Khan, Rao Muhammad Anwer Salman Khan, Timothy Baldwin, Hisham Cholakkal |
|
**Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)** |