llama-1b-sst-5
This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2811
- Accuracy: 0.4423
- Precision: 0.4403
- Recall: 0.4105
- F1: 0.4139
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.4944 | 100 | 1.5805 | 0.3451 | 0.3330 | 0.3102 | 0.3019 |
No log | 2.9888 | 200 | 1.3920 | 0.4205 | 0.4214 | 0.3813 | 0.3823 |
No log | 4.4794 | 300 | 1.3328 | 0.4287 | 0.4343 | 0.3898 | 0.3924 |
No log | 5.9738 | 400 | 1.3083 | 0.4278 | 0.4275 | 0.4091 | 0.4084 |
5.817 | 7.4644 | 500 | 1.2855 | 0.4414 | 0.4415 | 0.4096 | 0.4150 |
5.817 | 8.9588 | 600 | 1.2811 | 0.4423 | 0.4403 | 0.4105 | 0.4139 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Model tree for BayanDuygu/llama-1b-sst-5
Base model
meta-llama/Llama-3.2-1B-Instruct