checkpoints_2 / README.md
BachNgoH's picture
End of training
194816f
metadata
license: mit
base_model: microsoft/deberta-v3-large
tags:
  - generated_from_trainer
model-index:
  - name: checkpoints_2
    results: []

checkpoints_2

This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8543
  • Map@3: 0.7167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map@3
1.395 0.19 25 1.3859 0.5889
1.3803 0.37 50 1.3840 0.6958
1.3842 0.56 75 1.3314 0.7194
1.2795 0.74 100 1.0021 0.7222
0.9662 0.93 125 0.9006 0.6597
0.9574 1.11 150 0.8355 0.6903
0.8909 1.3 175 0.8506 0.6750
0.8077 1.48 200 0.8180 0.7125
0.955 1.67 225 0.8069 0.7097
0.8664 1.85 250 0.8186 0.7028
0.9396 2.04 275 0.8091 0.6986
0.8141 2.22 300 0.8212 0.7083
0.7898 2.41 325 0.8531 0.7167
0.9143 2.59 350 0.8482 0.7125
0.8861 2.78 375 0.8229 0.7083
0.8569 2.96 400 0.8372 0.7181
0.8381 3.15 425 0.8516 0.7153
0.7671 3.33 450 0.8458 0.7167
0.8704 3.52 475 0.8651 0.7222
0.8733 3.7 500 0.8356 0.7153
0.7309 3.89 525 0.8476 0.7181
0.7793 4.07 550 0.8566 0.7167
0.7849 4.26 575 0.8644 0.7167
0.7776 4.44 600 0.8584 0.7167
0.7573 4.63 625 0.8546 0.7167
0.8115 4.81 650 0.8543 0.7167
0.869 5.0 675 0.8543 0.7167

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.14.1