|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
language: |
|
- fa |
|
base_model: llava-hf/llava-1.5-7b-hf |
|
--- |
|
|
|
language: |
|
- fa |
|
datasets: |
|
- BaSalam/vision-catalogs-llava-format-v3 |
|
pipeline_tag: image-text-to-text |
|
|
|
# LLaVA Model Card |
|
|
|
## Model details |
|
This model is [`"llava-hf/llava-1.5-7b-hf"`](https://huggingface.co./llava-hf/llava-1.5-7b-hf), fine-tuned on [`"Basalam product"`](https://huggingface.co./datasets/BaSalam/vision-catalogs-llava-format-v3) data for extracting visual attributes of products. The outputs are in JSON format and can be parsed. |
|
|
|
## How to use the model |
|
Below is an example script to run generation in `float16` precision on a GPU device: |
|
|
|
```python |
|
import requests |
|
from PIL import Image |
|
import torch |
|
import json |
|
|
|
from transformers import AutoProcessor, LlavaForConditionalGeneration |
|
model_id = "BaSalam/Llava-1.5-7b-hf-bslm-product-attributes-v0" |
|
model = LlavaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
).to(0) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
def prompt_formatter(entity): |
|
json_format = """attributes': {'attribute_name_1' : <list of attribute values>, 'attribute_name_2': <list of attribute values>, ...}""" |
|
final_prompt = f"""برای محصول داده شده، ویژگیهای تصویری محصول را در قالب جیسون (json) استخراج کن. ساختار JSON باید به این شکل باشد: {json_format}. محصول از یک بازار اینترنتی ایرانی است پس خروجی Json باید به زبان فارسی باشد. |
|
محصول: '{entity}'.""" |
|
return final_prompt |
|
|
|
prompt = prompt_formatter(entity='تیشرت مردانه') |
|
conversation = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": prompt}, |
|
{"type": "image"}, |
|
], |
|
}, |
|
] |
|
|
|
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) |
|
image_file = "https://statics.basalam.com/public-16/users/6eOEg/01-24/qJ34XziHu7Orp3GToVWTms1nKvCv0X86Ux7tQLtuRoyTXTxyQ4.jpg_800X800X70.jpg" |
|
raw_image = Image.open(requests.get(image_file, stream=True).raw) |
|
|
|
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16) |
|
|
|
output = model.generate(**inputs, max_new_tokens=200, do_sample=False) |
|
generated_title = processor.decode(output[0], skip_special_tokens=True)[len(text.replace('<image>', ' ')):] |
|
output = generated_title.replace('ASSISTANT: ', '') |
|
json_output = json.loads(output) |
|
print(json_output) |
|
``` |
|
|
|
``` |
|
[ |
|
{ |
|
"attributes": { |
|
"نوع": [ |
|
"تیشرت مردانه" |
|
], |
|
"طرح چاپی": [ |
|
"MVP" |
|
], |
|
"رنگ": [ |
|
"زرد", |
|
"آبی", |
|
"سفید", |
|
"مشکی", |
|
"کرم", |
|
"سبز" |
|
], |
|
"سایز": [ |
|
"L", |
|
"XL", |
|
"2XL", |
|
"3XL" |
|
] |
|
} |
|
} |
|
] |
|
``` |
|
|
|
### Model optimization |
|
|
|
#### 4-bit quantization through `bitsandbytes` library |
|
|
|
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: |
|
|
|
```diff |
|
model = LlavaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
+ load_in_4bit=True |
|
) |
|
``` |
|
|
|
#### Use Flash-Attention 2 to further speed-up generation |
|
|
|
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: |
|
|
|
```diff |
|
model = LlavaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
+ use_flash_attention_2=True |
|
).to(0) |
|
``` |