Edit model card

Model card for BVRA/resnet50.in1k_ft_fungitastic-mini_224

Model Details

  • Model Type: Fine-grained classification of fungi species
  • Model Stats:
    • Params (M): 23.9
    • Image size: 224 x 224
  • Papers:

Model Usage

Image Embeddings

import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:BVRA/resnet50.in1k_ft_fungitastic-mini_224", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize((224, 224)), 
                              T.ToTensor(), 
                              T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) 
img = Image.open(PATH_TO_YOUR_IMAGE)
output = model(train_transforms(img).unsqueeze(0))
# output is a (1, num_features) shaped tensor

Citation

@article{picek2024fungitastic,
  title={FungiTastic: A multi-modal dataset and benchmark for image categorization},
  author={Picek, Lukas and Janouskova, Klara and Sulc, Milan and Matas, Jiri},
  journal={arXiv preprint arXiv:2408.13632},
  year={2024}
}
@InProceedings{Picek_2022_WACV,
    author    = {Picek, Luk'a{s} and {S}ulc, Milan and Matas, Ji{r}{'\i} and Jeppesen, Thomas S. and Heilmann-Clausen, Jacob and L{e}ss{\o}e, Thomas and Fr{\o}slev, Tobias},
    title     = {Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2022},
    pages     = {1525-1535}
}
@article{picek2022automatic,
  title={Automatic Fungi Recognition: Deep Learning Meets Mycology},
  author={Picek, Luk{'a}{{s}} and {{S}}ulc, Milan and Matas, Ji{{r}}{'\i} and Heilmann-Clausen, Jacob and Jeppesen, Thomas S and Lind, Emil},
  journal={Sensors},
  volume={22},
  number={2},
  pages={633},
  year={2022},
  publisher={Multidisciplinary Digital Publishing Institute}
}
Downloads last month
102
Inference Examples
Inference API (serverless) does not yet support FungiTastic Dataset models for this pipeline type.